方法在补充了10%FCS,1%谷歌补充剂(Gibco),100 U/ml青霉素和100μg/ml链霉菌素的IMDM(Gibco)中培养了衍生成近单倍型HAP1细胞的细胞培养。siRNA转染是根据制造商的指南使用Rnaimax(Invitrogen)进行的。在这项研究中使用了以下siRNA:Sinon-targetable(Dharmacon),Sipolg2(地平线,TargetPlus,SmartPool),SIMRPL23(Horizon,Targetplus,TargetPlus,Smartpool)。将所有药物(Aphidicolin,Hu,Olaparib,Rad51i(B02),DNA-PKI(NU74441)和寡霉素A)溶解在DMSO中,并以指示浓度使用。细胞使用具有137CS源的γ提取器(最佳疗法)进行γ辐射。生长测定HAP1细胞以1500个细胞/孔的密度将HAP1细胞铺在96孔板中,并被视为5天。5天后,使用100%甲醇固定细胞,并在室温下使用Crystal Violet染色2H。随后,将晶体紫溶解在10%乙酸中,并使用Biotek Epoch Epoch分光光度计在595 nm处测量强度。使用非线性拟合,sigmoidal,4pl,x是log(浓度),将这些测量值用于棱镜中的IC50计算。在9mm玻璃盖上生长免疫荧光细胞,并在室温下以4%甲醛和0.2%Triton X-100固定10分钟。使用了以下抗体:人类抗克雷斯特(Cortex Biochem,CS1058),兔抗PH3SER10(Campro,#07-081),小鼠抗ERCC6L(PICH)(ABNOVA,ABNOVA,000548421-B01P)。所有初级抗体在4°C的夜间孵育。使用固定缓冲液I(BD生物科学)固定细胞。细胞。二级抗体(分子探针,Invitrogen)和DAPI在室温下孵育2小时。使用延长金(Invitrogen)安装盖玻片。使用具有60倍1.40 Na油目标的Deltavision Deonvolution显微镜(Applied Precision)获取图像。SoftWorx(应用精度),ImageJ,Adobe Photoshop和Illustrator CS6用于处理获得的图像。单倍体插入诱变筛选基因对用APH或HU处理的HAP1细胞的存活至关重要,如先前所述35,使用单倍体插入诱变筛查鉴定。诱变的HAP1细胞是从Brummelkamp实验室获得的。简短地,获得HAP1细胞的诱变如下:在HEK293T细胞中产生了基因陷阱逆转录病毒。每天两次收获逆转录病毒至少三天,并通过离心(使用SW28转子进行2小时,21,000 rpm,4°C,4°C)进行沉淀。在8μg/ml硫酸素硫酸素的存在下,在T175烧瓶中至少连续两天,在8μg/ml硫酸素的存在下,将大约4000万个HAP1细胞通过浓缩基因陷阱病毒的转导而被诱变。在包含10%DMSO和10%FCS的IMDM培养基中冷冻诱变细胞。解冻后,在存在27.5 nm adphidicolin或100μmHu的情况下,将诱变的HAP1细胞转移了10天。传递后,通过胰蛋白酶-EDTA收集细胞,然后进行沉淀。为了最大程度地减少潜在地含有杂合突变的二倍体细胞的混杂,用DAPI染色固定的细胞,以允许使用Astrios Moflo对G1单倍体DNA含量进行分类。将3000万个排序的细胞在56°C下裂解过夜,以使使用DNA迷你试剂盒(QIAGEN)进行基因组DNA分离。插入位点映射基因陷阱插入位点通过LAM-PCR放大,然后进行捕获,ssDNA接头连接和指数放大,并在测序之前使用含有Illumina适配器的引物,如前所述,如前所述35。映射和插入位点的分析以前描述了78。简短地,在对HISEQ 2000或HISEQ 2500(Illumina)进行测序之后,将插入位点映射到人类基因组(H19),允许一个不匹配,并与RefSeq坐标相交,以将插入位点分配给基因。基因区域在相对链上重叠的基因区域没有考虑进行分析,而对于在相同链基因名称上重叠的基因是串联的。对于每种复制和两种药物治疗(APH或HU)基因的必要性都是通过二项式检验确定的。合成致死性。一个基因通过所有Fisher的测试,其p值截止为0.05,效应大小至少为0.12(减法比率wt sense比率 - 复制应力条件感官比率)。
细胞LRRK2激酶活性是使用Invitrogen的Lanthascreen技术测量的。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。 在小鼠成纤维细胞3T3细胞系中测量 LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。 OPM-383报告了细胞IC50值(NM)。 使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。 OPM-383溶解在1%DMSO的适当矩阵中。 在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。 OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。 在给药后,在不同时间处死啮齿动物。 使用LC/MS-MS方法对OPM-383进行了定量。 OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。 在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。 HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。细胞IC50值(NM)。使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。OPM-383溶解在1%DMSO的适当矩阵中。在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。啮齿动物。使用LC/MS-MS方法对OPM-383进行了定量。OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。HERG研究是在Cerep进行的;法国。OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。MC-38细胞被接种到C57BL/6小鼠中。蛋白质印迹检测和定量,并计算LRRK2 PS935/总LRRK2比例以比较LRRK2激酶抑制剂剂量与媒介物组相比。当肿瘤肿块达到75mm³时,将小鼠随机分配以接受OPM-383(50和100 mg/kg,口服,本次),抗PD1抗体(10 mg/kg,IP,每周两次)或组合。用OPM-383处理通过胃管通过口服烤(PO)进行治疗。给药量为10 mL/kg,调整为最新的个体体重。抗PD-1处理被注入腹膜腔(IP)。 动物治疗35天。 OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。 使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。 在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。 为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。 因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。 如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。抗PD-1处理被注入腹膜腔(IP)。动物治疗35天。OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。
图1创建合成cAMP响应元件结合蛋白(CREB)响应启动子。(a)腺苷信号传导的描述。腺苷(红色球)结合腺苷受体A2AR/A2BR,该腺苷受体动员相关的G蛋白(绿色)激活腺苷酸环化酶(橙色受体),并将ATP转化为3'5'- 5'-循环腺苷单磷酸腺苷(Camp)。另外,福斯科蛋白(橙色球)可以直接激活腺苷循环酶。CAMP结合蛋白激酶A(PKA)与磷酸化的CREB,该CREB结合了Plindromic DNA基序“ TGACGTCA”,激活了基因表达。(b)启动子设计和筛选示意图。cAMP响应元件基序(CRE,突出显示的黄色)被克隆在3倍重复中,两侧是鸟嘌呤“ G”(带下划线),六个散布的填充核苷酸(N)。3x Cres(灰色正方形)放在核心启动子(蓝色箭头)上游的1-6个重复中。用高斯荧光素酶(GLUC)或绿色荧光蛋白(EGFP)定量启动子活性。(c,d)HEK293T细胞在96个井板中用指示的构建体(x轴)反向转染。转染后48小时,用车辆(DMSO,浅蓝色条)或20μm福斯科林(FSK,深蓝色条)将细胞介质更改为培养基。八个小时后,对培养基进行了采样并测试了GLUC活性(RLU)。条表示n = 3实验重复的平均值,误差线代表标准误差(SEM)。**通过方差分析(ANOVA)Tukey检验,与所有其他样本相比,表示P <0.01。(E,F)流式细胞仪启动子诱导。HEK293T细胞用96个井板中的指定构建体(x轴)反向转染。转染后48小时,细胞培养基被更改为未处理的培养基(浅蓝色条),或补充了0.750 m m m腺苷(ADO,深蓝色条)的培养基。八个小时后,将细胞胰蛋白酶胰蛋白酶进行胰蛋白酶,并将其重悬于FACS缓冲液中以进行流式细胞仪。y轴表示正向散射(FSC)单元的EGFP中位荧光强度。条代表n = 3实验重复的平均值,误差线代表SEM。(g)启动子对腺苷的剂量反应性。HEK293T细胞在96个井板上反向转染,并在传说中指示的构造,然后培养48小时。然后更改培养基以添加不同的腺苷浓度,在8小时后进行采样,并测试了GLUC活性(RLU)。**通过12倍-CRE_YB的ANOVA TUKEY测试代表P <0.01,与1 m m的所有其他样品相比。每个点表示n = 3实验重复的平均值,误差线为SEM。
双梗巴贝斯虫是一种蜱传顶复门血液原虫,可引起牛巴贝斯虫病。目前用于治疗牛巴贝斯虫病的药物有几个缺点,包括毒性、无法有效清除寄生虫以及可能产生耐药性。寻找针对寄生虫必需和独特代谢途径的化合物是寻找替代药物治疗方法的合理方法。基于基因组序列和转录组学分析,可以推断无氧糖酵解是巴贝斯虫的主要三磷酸腺苷 (ATP) 供应,而乳酸脱氢酶 (LDH) 是该途径中必需的酶之一。此外,巴贝斯虫的 LDH 序列与其牛同源物不同,因此是一种潜在的化疗靶点,可减少寄生虫的 ATP 供应,但不减少宿主的 ATP 供应。已知棉酚是狭义牛巴贝斯虫和广义田鼠巴贝斯虫以及其他相关寄生虫中LDH的有效特异性抑制剂,但目前还没有关于狭义双芽巴贝斯虫寄生虫的此类数据。据此,我们表明LDH氨基酸序列在狭义巴贝斯虫中高度保守,但在广义巴贝斯虫中并非如此。对双芽巴贝斯虫LDH的预测性结构分析表明,与牛巴贝斯虫相比,与棉酚结合的关键氨基酸是保守的。棉酚对双芽巴贝斯虫的体外生长有显著(P < 0.0001)抑制作用,处理72小时后IC 50 为43.97 mM。在60 mM棉酚时观察到最大IC(IC 98)。然而,与暴露于 DMSO 的对照细胞相比,用 60 mM (IC 98 ) 棉酚培养牛 PBMC 时,观察到对细胞活力的显著影响。有趣的是,在 3% 氧气中培养的 B. bigemina 表达的 LDH 水平明显高于在含有 ~20% 氧气的环境条件下维持的寄生虫,并且对棉酚的抵抗力更强。总之,结果表明棉酚有可能成为一种有效的抗 B. bigemina 感染药物,但应在体内研究中进一步评估治疗剂量下宿主毒性的风险。
1。简介Iovance Biotherapeutics,Inc。提交了Amtagvi的专有名称,提交了生物制品申请(BLA),STN 125773,用于Lifileucel的许可。Amtagvi是一种自体肿瘤衍生的T细胞免疫疗法,用于治疗先前用PD-1阻断抗体治疗的不可切除或转移性黑色素瘤的成年患者,如果BRAF V600突变阳性,则具有MEK抑制剂或不具有MEK抑制剂的BRAF抑制剂。Amtagvi主要由在存在细胞因子白介素2(IL-2),抗CD3(OKT3)抗体和进料细胞的情况下,主要是从切除的肿瘤材料中获得的T细胞,并在体内扩展。Amtagvi是位于美国宾夕法尼亚州费城的Iovance Biotherapeutics Manufactring LLC(以前的Iovance Cell Therapy Center(ICTC))。药物(DP)含有7.5 x 10 9至72 x 10 9悬浮在含5%DMSO,0.5%人血清白蛋白(HSA)和300 IU/ML IL IL-IL-IL-2(Aldesleukin)的冷冻保存溶液中的活细胞。DP以四个100 - 125 ml输液袋提供给治疗中心,并静脉内给药。本文档总结了加速批准Amtagvi的基础。一项临床试验研究C-144-01,提供了支持BLA提交的安全性和有效性的主要证据。加速批准的建议基于研究C-144-01中所示的响应持续时间(DOR)支持的客观响应率(ORR)。Amtagvi的主要风险包括长时间的细胞质,严重感染,内器官出血以及心肺和肾功能障碍。2。Study C-144-01 is a single-arm, Phase 2, multicenter, multiregional (U.S. and Europe), multi-cohort clinical study of efficacy and safety of AMTAGVI in subjects with unresectable or metastatic melanoma previously treated with at least one line of anti-PD1-based immunotherapy, and, if BRAF V600 mutation positive, a BRAF inhibitor with or without a MEK inhibitor.基于该单一的适当且受控良好的临床试验的功效和安全性结果,FDA得出结论,申请人已经证明了Amtagvi有效性的实质证据。 Amtagvi的总体好处大于预期的患者人群的风险。评论团队建议加速批准此BLA。持续批准取决于加速批准后市场后要求(AA PMR),通过一项随机,控制良好的验证性临床试验(IOV-MEL-301)通过随机,控制良好的验证性验证性验证Amtagvi的临床益处。化学,制造和控制(CMC)后市场后承诺(PMC)用于批次释放测定控制,累积填充物测试产品生产,存储和使用期以及最终产品容器封闭完整性测试。审核团队还建议在批准信中提供有关在重大制造变更后建立分析可比性的批准信中提供的评论。背景疾病背景
图 1. 带有原子标记方案的 CuL T . DMSO 复合物的 X 射线晶体结构 ORTEP 图。位移椭球以 50% 概率水平绘制。H 原子显示为任意半径的圆。铜配合物的循环伏安法揭示了对应于 Cu I /Cu II 氧化还原过程的准可逆氧化还原对。采用 DFT 和 TD-DFT 理论在 M062X/6-311**G/ SDD 水平进行的量子计算与实验数据高度一致。结果表明,铜化合物具有比尿素更大的静态和动态超极化率值。例如,H 2 LT 的 β 0 值大约是尿素的 68 倍。结果预测所研究的化合物能够成为优异的二阶和三阶 NLO 材料。所制备的配合物以H 2 O 2 为氧化剂,能有效催化环己烯的均相氧化反应,以CuL Bz 为催化剂,转化率可达98% 。以所研究的配合物为捕集剂,在酚红氧化溴化反应中探究了溴过氧化物酶活性,该配合物可作为溴过氧化物酶的潜在功能模型,CuL Bz 催化剂表现出较好的催化活性,反应速率常数k 为2.203 × 10 5 (mol L -1 ) -2 s -1 。[1] A. Okuniewski,D. Rosiak,J. Chojnacki,B. Becker,具有Hg(Cl, Br, I)O = Chalogen 键和不寻常的Hg2S2(Br/I)4 核的新型配合物。 τ'4 结构参数的实用性,Polyhedron 90 (2015) 47 – 57,https://doi.org/10.1016/j.poly.2018.02.016。[2] Z. Tohidiyan、I. Sheikhshoaie、M. Khaleghi、JT Mague,一种含四齿席夫碱的新型铜 (II) 配合物:合成、光谱、晶体结构、DFT 研究、生物活性及其纳米金属氧化物的制备,J. Mol. Struct. 1134 (2017) 706 – 714,https://doi.org/10.1016/j.molstruc.2017.01.026。 [3] TH Sanatkar、A. Khorshidi、E. Sohouli、J. Janczak,四齿 N2O2 席夫碱配体的两种 Cu(II) 和 Ni(II) 配合物的合成、晶体结构和表征及其在肼电化学传感器制造中的应用,Inorg. Chim. Acta 506 (2020),119537,https://doi.org/10.1016/j.ica.2020.119537。作者非常感谢阿尔及利亚高等教育和科学研究部的财政支持。他们感谢意大利那不勒斯费德雷科 II 大学化学科学系的 Francesco RUFFO 教授和 Angella TUZI 教授的帮助。此外,作者非常感谢法国里昂大学、克劳德伯纳德里昂第一大学、CNRS UMR 5280、分析科学研究所(69622 Villeurbanne Cedex)提供的计算设施。
设计的抽象质量(QBD)辅助方法用于开发健壮和坚固的RP-HPLC方法,并根据ICH指南进行了验证。使用QBD方法开发的方法非常健壮,具有成本效益,使用良好的实验设计,运行时间较短,可以通过统计分析来进行优化,并且与一项(一次性(OFAT)方法)开发的传统方法相比,可以轻松验证。中央复合设计(CCD)用于基于可取功能方法的优化方法。在本研究中选择的因素是流动相,柱温度,流量和研究反应的有机成分%,是药物的保留时间和理论板数。使用现象C18(150 mm x 4.6 mm,5)柱实现色谱分离。通过应用ANOVA进行CCD实验数据的统计分析,并且发现响应的选定数学模型在p <0.05中很重要。使用乙腈:磷酸盐缓冲液(42.1:57.9%v/v)以0.93ml/min的流速为31.7 0 C实现了基于最高可取性值1的优化条件。最后,根据ICH Q2(R1)指南对开发的方法进行了验证。所有系统适用性参数都在限制范围内。根据在酸性条件下发现的明显降解的ICH指南进行强制降解研究。关键字:AQBD,CCD,Gilteritinib,Desiriebility函数,ANOVA。如何引用这篇文章:Srujani C H,Nataraj K S,Krishnamanjari Pawar A,Adinarayana。QBD驱动的方法开发和验证用于测定RP-HPLC的Gilteritinib的方法。国际药品保证杂志。2024; 15(4):2129-38。 doi:10.25258/ijpqa.15.4.5支持来源:nil。利益冲突:无简介的吉尔特替尼(GTB)在品牌名称xospata下可用的是一种用于治疗急性髓细胞性白血病(AML)的抗肿瘤剂,该药物具有FMS样酪氨酸激酶3(FLT3)突变。1它是一种口服的小分子抑制剂,它抑制了野生和突变形式的FLT3,AXL和ALK(变性淋巴瘤激酶) - 介导的信号转导途径并减少癌细胞的增殖。2这三种受体酪氨酸激酶在癌细胞生长和生存中起关键作用。AML是一种癌症,会影响血液和骨髓的速度快速进展,并且这种情况会产生较低的正常血细胞,这需要连续输血。3该药物可溶于有机溶剂,例如乙醇,DMSO和二甲基甲酰胺(DMF)。GTB的化学结构如图1所示。实施QBD的优势是坚固性,可以在方法开发阶段而不是在验证部分中测试鲁棒性。否则,如果
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。
抽象背景:口腔是食物和各种微生物的主要入口处,其中一些可能引起牙齿后提取感染,例如干式插座。负责这种情况的细菌物种之一是维氏链球菌。预防感染通常是通过抗生素的给药而实现的。但是,过度使用抗生素会导致细菌耐药性。因此,人们对探索自然替代感感染的替代方案越来越兴趣。一种潜在的天然抗菌剂是Andaliman果实(Zanthoxylum acanthopodium dc。),传统上以其药用特性而被认可。目的:本研究旨在评估安达利曼果实提取物的抗菌活性(Zanthoxylum acanthopodium dc。)在体外针对Viridans。方法:本研究采用了一种实验室实验方法,使用安达利曼水果提取物以各种浓度(50%,25%,12.5%,6.25%和3.125%)采用了实验室方法。氯己定二氨酸酯0.2%用作阳性对照,而二甲基磺代(DMSO)是阴性对照。通过将这些浓度应用于纸张并测量形成的抑制区来评估抗菌活性。结果:使用Kruskal-Wallis检验的统计分析显示,Andaliman水果提取物的显着抗菌作用,P值为0.000,表明在抑制Viridans生长的浓度依赖性反应中。结论:Andaliman水果提取物具有针对Viridans的抗菌活性,最有效的浓度为50%。howver,其抑制作用仍低于阳性对照(氯己胺二甲酸0.2%)的抑制作用,这表明需要进一步的研究以增强其抗菌效力。关键字:Zanthoxylum acanthopodium,viridans链球菌,抗菌活性摘要背景:口腔是进入食物并包含各种微生物和细菌的地方,这些微生物和细菌将使牙科提取后导致牙科疾病,其中一种是干soket。可能引起干窝的细菌之一是绿色链球菌(Viridans)细菌。可以通过提供抗生素来预防感染。但是,它的使用会引起阻力。因此,研究人员看到了利用自然潜力作为替代治疗材料的机会。目的:这项研究的目的是看到Andaliman水果提取物(Zanthoxylum acanthopodium dc)的抗菌活性对维氏链球菌的体外。方法:此研究方法是实验室。这项研究使用了几种浓度的安达利曼水果提取物,即50%,25%,12.5%,6.25%,3.125%;阳性对照(氯己定二氯甲酸酯);然后将阴性对照(二甲基亚氧化二甲基磺氧化物)应用于盘的表面,以看到各种浓度的抑制区。之后,根据各种浓度计算抑制区。结果:使用Kruskall Wallis检验的数据分析结果显示出显着的值P = 0,000。关键字:Andaliman水果提取物,Viridans链球菌,抗菌1。简介结论:安达利曼果实提取物积极抑制50%的有效剂量的维氏链球菌的生长,但抗菌活性仍然低于阳性对照活性,使用Glocunate Glocunate 0.2%。
摘要:这项研究旨在隔离和鉴定土壤样品中的真菌,重点是产生黑色素的能力。使用乳酚棉蓝色染色和微观检查分离并鉴定了11种不同的真菌属,并参考了H.L.Barnett和Barry B.猎人。其中,只发现曲霉会产生黑色素。最佳黑色素生产条件被确定为生长培养基中的1.5%酪氨酸补充剂,在摇动条件下(120 rpm)和深色孵育三周,导致产量为21.08 mg/100 mL。的生理化学表征表明,提取的黑色素在有机溶剂中不溶,但可溶于碱性溶液(NaOH,KOH),并且部分可溶于DMSO。使用紫外可见光谱的光谱分析显示出特征吸收峰。 FTIR指示官能团和扫描电子显微镜(SEM)图像显示了颗粒状和异质的表面拓扑。 该研究还评估了不同碳和氮源的影响,以及痕量元素对黑色素产生的影响。 麦芽糖和蔗糖是最有效的碳源,而肽是最有效的氮来源。 在痕量元素中,钙显着增强了黑色素的产量,而铜和锌的作用中等。 这些发现为优化真菌黑色素生产及其潜在工业应用提供了宝贵的见解。 未来的研究应关注遗传和代谢途径,以进一步增强黑色素生物合成并探索其多样化的应用。使用紫外可见光谱的光谱分析显示出特征吸收峰。FTIR指示官能团和扫描电子显微镜(SEM)图像显示了颗粒状和异质的表面拓扑。该研究还评估了不同碳和氮源的影响,以及痕量元素对黑色素产生的影响。麦芽糖和蔗糖是最有效的碳源,而肽是最有效的氮来源。在痕量元素中,钙显着增强了黑色素的产量,而铜和锌的作用中等。这些发现为优化真菌黑色素生产及其潜在工业应用提供了宝贵的见解。未来的研究应关注遗传和代谢途径,以进一步增强黑色素生物合成并探索其多样化的应用。这项研究强调了曲霉菌的黑色素可持续和可扩展性产生,这有助于对真菌代谢产物及其商业剥削的广泛理解。关键字:黑色素,曲霉,土壤真菌,FTIR,优化。简介:黑色素是一种天然存在的色素,在生物学和工业环境中都具有巨大的意义。从生物学上讲,黑色素屏蔽生物体免受有害紫外线辐射,防止人类中的DNA损伤,突变和皮肤癌。它有助于色素沉着的多样性,确定皮肤和头发的颜色,并且还可能在眼睛,大脑和免疫系统中发挥保护作用(Vargas等,2015)。在工业上,黑色素在化妆品,护肤和生物启发的防晒霜中找到了应用。它的特性在生物医学领域杠杆作用进行药物输送和成像(Tian等,2003)。此外,基于黑色素的材料高级材料科学,光伏和可持续颜料的各种行业。黑色素的多功能属性继续驱动范围