a)(左)PRMT5纳米底测定的示意图以及MTA或SAM对示踪剂结合的影响,改编自参考文献2。(右)HCT116等生成对中的PRMT5纳米杆。细胞用指定剂量的IDE397预处理23小时,并测量对示踪剂结合的影响(左)。预先处理IDE397(23小时),然后添加MRTX1719持续2小时(右)。b)HCT116 wt(顶行)或mtap-/ - (底行)中IDE397的全剂量矩阵和PRMT5抑制剂;热图中显示的明显目标占用率。由10µM GSK3326595(探针母体分子) + 100nm的IDE397预处理前的MBRET比定义了100%的明显占用(最大探针位移)。0%的明显占用率仅代表DMSO。因此,100%明显的目标占用率代表PRMT5抑制剂与PRMT5的最大结合。
补充图 4 。药物与抑制剂在 THP-1(洋红色)和 MM6(橙色)细胞中的协同联合治疗作用。(a)两次重复分析 PGL-13 与 Ara-C 联合治疗对细胞活力的抑制作用。组合指数 (CI) 值为(左)0.67 和(右)0.47。(b)两次重复测量 PGL-14 和 Ara-C 的联合治疗作用,CI 值为(左)0.58 和(右)0.59。(c)PGL-13 与阿霉素联合使用的抑制作用,CI = 0.53。(d)PGL-14 与阿霉素的抑制作用,CI = 0.76。(e)麦芽糖和 Ara-C 的联合治疗作用,CI = 0.82。 (f) PGL-13 和 Ara-C 抑制,CI = 0.62。(g) PGL-14 和 Ara-C 抑制,CI = 0.53。值与 DMSO 或培养基对照进行比较。条形图显示平均值 + SD,n = 3。药物以 IC 25 浓度使用,协同效应已用 S 标记。
AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。AKT,蛋白激酶B; AMPK,单磷酸腺苷激活的蛋白激酶; ASR,适应性应激反应; ATG13,自噬相关蛋白13;出价,每天两次; CRO,临床研究组织; del,删除; DMSO,二甲基磺氧化物; ELISA,酶联免疫吸附测定; ERK,细胞外信号 - 调节激酶; GFP,绿色荧光蛋白;要点,胃肠道肿瘤; IC 50,最大抑制浓度的一半; LC3,微管相关的蛋白质轻链3; MAPK,有丝分裂原激活的蛋白激酶; Mek,Mapk激酶; MTOR,雷帕霉素的哺乳动物靶标; PATG13,磷酸化ATG13; PI3K,磷酸肌醇3-激酶; RAF,快速加速的纤维肉瘤丝氨酸/苏氨酸激酶; Ras,大鼠肉瘤小GTPase蛋白; Rheb,Ras同源物富含大脑; RTK,受体酪氨酸激酶; SEM,平均值的标准误差; TGI,肿瘤生长抑制; ULK,UNC-51样的自噬激活激酶。
10%DMSO 50%50%您的细胞在我们中生长的任何介质我们现在都使用低温稳定器CS10(遵循制造商的说明)使其冷介质从Wells到冷冻到冻结细胞的选择方法(胰蛋白酶或EDTA)-spin -spin -Spin @ 1200rpm @ 1200rpm(在常规媒体中使用RI。,如果您不需要与EDTA旋转单元格脱离,除非您有很多井) - 使用P1000移液管(-Add -add冻结媒体量的冻结媒体量所需的冻结媒体) - 每次冻结小瓶需要冰冻的媒体) - 带有液体的液化介质) - 带有piftette -distertibute -distribute -distribute -distribute -distribute -distribute -distribute -distribute -distribute 1ml/freezing vial -pute -pute -put -pute -put -pute -pute -80 deg to -80 degre。- 一天(或一个月),将小瓶带到液氮饲料(MEF,原发性胚胎成纤维细胞, -irryradied)中,我们使用Life Technologies CAT#A34181(MTI -Globalstem cat#gsc -6001g)
色谱柱保养 为最大程度延长色谱柱寿命,请确保样品和流动相不含颗粒。强烈建议在样品注射器和色谱柱之间使用保护柱或孔隙率为 0.5 微米的在线过滤器。HALO ® 90 Å RP-Amide 色谱柱上的 2 微米孔隙率筛板比其他小颗粒色谱柱通常使用的 0.5 微米筛板更不容易堵塞。如果色谱柱的工作压力突然超过正常水平,可以尝试反转色谱柱的流动方向以去除入口筛板上的碎屑。要从色谱柱中去除强保留物质,请用非常强的溶剂(例如所用流动相的 100% 有机成分)反向冲洗色谱柱。二氯甲烷和甲醇的混合物(95/5 v/v)通常可以有效完成此任务。极端情况下可能需要使用非常强的溶剂,例如二甲基甲酰胺 (DMF) 或二甲基亚砜 (DMSO)。
D. PRISM 筛选的所有细胞系中 CX-5461 的 log 10(倍数变化)值的箱线图。倍数变化 163 表示 PRISM 测定中药物处理细胞与对照细胞的细胞活力差异,通过对每个细胞的唯一条形码进行测序估算。倍数变化越低,药物有效性越高。注意:GDSC 发现数据集中没有横纹肌样细胞系。166 E. 瀑布图显示代表神经母细胞瘤细胞系选择性的汇总分数,该分数针对 PRISM 中筛选的 148 种药物中的每种药物绘制(显示 PRISM 和 GDSC 筛选的药物),其中 y 轴 168 是观察到的分数,x 轴是药物等级。 169 F. 散点图显示 GDSC 中 CX-5461 的 MYCN 表达水平(x 轴)与 log 10 (IC 50 ) 值(y 轴)。这些点根据 TP53 突变状态着色。171 G. 蛋白质印迹显示使用 3 个独立 shRNA 敲低 CHP-134 细胞中的 MYCN 后 MYCN 蛋白水平。β -肌动蛋白用作上样对照。强力霉素,多西环素。173 H. 在使用 CX-5461 处理后,MYCN 敲低后的 CHP-134 细胞活力。用三个独立 MYCN shRNA 之一或阴性对照 shRNA 转导细胞。在含有 2 µg/ml 强力霉素的培养基中孵育 6 天后,用 CX-5461 处理细胞 3 天。用 MTS 测量细胞活力。数据代表3次独立实验的平均值±SD。 * P < 0.05, ** P < 0.01, 177 *** P < 0.001。 178 I. 条形图显示全基因组 CRISPR 筛选中 4 种独立 TP53 引导 RNA 的相对丰度(y 轴),无论是 DMSO 还是 CX-5461 处理的 CHP-134 神经母细胞瘤细胞系。 180 J. CX-5461 处理的细胞系中相对于 DMSO 的 Pre-rRNA 45S 表达(y 轴),通过 RT- 181 qPCR 确定,引物位于 rRNA 转录本的内部转录间隔区 (ITS) 区域。 182 数据代表 3 次独立实验的平均值±SD。 *** P < 0.001;ns,与 DMSO 183 对照无显着差异。 CX-5461 浓度:CHP-134,0.2 µM;IMR-5,0.05 µM;KELLY,2 µM;BE(2)-M17,10 µM;184 SK-NSH,2 µM;SK-N-FI,20 µM。185 K. EU 掺入试验评估整体新生 RNA 转录。CHP-134、IMR-5 和 KELLY 细胞 186 用 CX-5461 处理 24 小时。在细胞固定前 30 分钟(CHP-134、IMR-5)或 1 小时(KELLY)187 加入 1 mM EU。用 EU(红色)标记新生 RNA。用 DAPI(蓝色)染色细胞核。188 CX-5461 浓度:CHP-134,0.2 µM; IMR-5 0.05 µM;KELLY,2 µM。比例尺 = 10 μ m。189 L. 瀑布图显示 29 种神经母细胞瘤细胞系中 GDSC 中所有基因表达与 CX-5461 IC 50 倒数(y 轴)的 Spearman 相关性。y 轴上的值越高,基因的高表达与对 CX-5461 的敏感性越高。RNA-POL I 复合物特有的基因(与 RNA-POL II 不共享的基因)以红色突出显示。193 M。散点图显示 RNA-POL I 复合物 194 的 11 个基因的中位表达水平(x 轴)(其中 GDSC 中可获得基因表达估计值)与 29 个神经母细胞瘤细胞系 195 中的 CX-5461 log 10 (IC 50 )(y 轴)之间的相关性。196
CDDP Custom Informer (CCI) 药物库是从 MedChemExpress 生物活性集合中抽取的 4309 种生物活性分子。该库是通过从使用药物靶标和作用机制 (MoA) 注释生成的簇中选择代表性化学实体而构建的。该库以相对较少的分子提供高机制覆盖率。作为次要考虑因素,药物家族是从多代药物中选择出来的,这些药物家族涵盖了从临床前到批准使用的应用。因此,该库平衡了机制探针与转化应用。此外,该库以 384 孔板格式预先排列,富含药物 MoA,因此可以仅筛选最相关的部分并进一步提高筛选效率。该集合中的所有化合物均为 10mM,溶于 100% DMSO。美国国家癌症研究所批准的肿瘤学集合 X_2021
•高性能:在纯化,清理和浓度的DNA中获得高产量(最高5μg)和高纯度。该套件有能力去除短底漆,洗涤剂和其他低分子量重量反应组件(例如核苷酸,DMSO,BETAINE)。•高浓度:在非常小的体积中洗脱,低至5μl,可以高度浓缩DNA。•强大的灵活性 - 使用所提供的修改协议纯化小型DNA片段,包括寡核苷酸。•节省时间:该协议仅需5分钟即可完成绑定,洗涤和洗脱步骤,并使用最小的孵育时间和旋转时间。•独特的列设计:自旋柱具有独特的设计,可在低体积中洗脱,并最大程度地减少缓冲液的保留和污染物的结转。•优化的缓冲液:缓冲系统已进行了优化,而无需调整pH。•应用兼容性:纯化的DNA已准备好用于下游分子应用,例如限制消化,DNA测序,连接,扩增和其他酶促反应。
•高性能:在纯化,清理和浓度的DNA中获得高产量(最高5μg)和高纯度。该套件有能力去除短底漆,洗涤剂和其他低分子量重量反应组件(例如核苷酸,DMSO,BETAINE)。•高浓度:在非常小的体积中洗脱,低至5μl,可以高度浓缩DNA。•强大的灵活性 - 使用所提供的修改协议纯化小型DNA片段,包括寡核苷酸。•节省时间:该协议仅需5分钟即可完成绑定,洗涤和洗脱步骤,并使用最小的孵育时间和旋转时间。•独特的列设计:自旋柱具有独特的设计,可在低体积中洗脱,并最大程度地减少缓冲液的保留和污染物的结转。•优化的缓冲液:缓冲系统已进行了优化,而无需调整pH。•应用兼容性:纯化的DNA已准备好用于下游分子应用,例如限制消化,DNA测序,连接,扩增和其他酶促反应。
图18。(a)化学计量对Ag a bi a bi b i a+3b化合物的结构的影响,(b)BII 3,(c)AGBII 4(缺陷型旋转结构)和(d)AGBII 4(CDCL 2-type结构)的碘化物亚晶格。化合物中化合物的晶体结构。经过国际材料评论的许可,69(1),(2024)。[139]版权所有©2024,Sage Publications。................................................................................................ 50 Figure 19. a) Device layout of AgBiI 4 PV cell and b) schematic of cell preparation needed before electrode deposition with grey area being untouched thin film layers and white area being area to be scratched off c) mask for gold electrode deposition (white area is area of deposition) ...........................................................................................................................................................................................雏菊1.0的工作流程。这些图像是预处理的,用于图像分析,然后使用Harris Kepoint检测到用于识别图像中缺陷的存在的模型将缺陷分类为缺陷。....................... 68 Figure 21.雏菊2.0工作流程。给出了雏菊1.0标记为“无缺陷”的图像被赋予谷物面膜以计算平均晶粒尺寸。标记为“缺陷”的图像被赋予缺陷面罩,以计算缺陷覆盖范围百分比和谷物面罩。在XRD模式A)CS 3 Bi 2 Br 3 I 6 B)CS 3 Bisbbr 3 I 6和C)CS 3 SB 2 BR 3 I 6,使用PAWLEY方法拟合。The residuals and agreement indices are shown ........................................................................................................ 76 Figure 23.XRD模式。显示了残差和协议指数。............................... 77 Figure 24.XRD拟合A)CS 3 BI 2 I 9 B)CS 3 BI 2 BR 9 C)CS 3 SB 2 I 9和D)CS 3 SB 2 BR 9反对2D。0D, 2D and 0D reference patterns respectively add goodness of fit ............................................................................................................ 78 Figure 25.a)cs 3 bi 2 i 9沿投影载体[006],b)cs 3 bi 2 br 9沿投影矢量[201],c)cs 3 sb 2 i 9沿投影矢量[004]和d)cs 3 sb 2 cs 3 sb 2 br 9沿投影矢量[003]a)cs 3 bi 2 I 9,b)cs 3 bi 2 br 9,c)cs 3 sb 2 i 9和d)cs 3 sb 2 br 9 ...................................................................................... 80图27。(a)CS 3 B 2 x 9系列的吸光度光谱从UV VIS和PS数据编辑,以及(b)Tauc图....... 82图28。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300K pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。 在 agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。在agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300k pl衰变光谱,从0-40ns以5NS间隔为0-40NS。 在 pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。 ..................................................................................................................................... 86 Figure 31. CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖 PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33. TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34. ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。 ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。pl衰变光谱,从0-40ns以5NS间隔为0-40NS。在pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。..................................................................................................................................... 86 Figure 31.CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33.TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34.ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。sem agbii 4 a)在合成的当天未涂层,b)合成后23天未涂层,c)在合成当天与螺旋罗涂有螺旋罗,而d)d)在合成后23天与spiro涂层。.................................................................................................................................................................................................................................................................................................................................................................................................XRD of a) uncoated AgBiI 4 left in ambient air b) AgBiI 4 coated with spiro-OMeTAD left in ambient air .............................................................................................................................................................................. 95 Figure 38.. SEM images of AgBiI 4 synthesized with hot-casting method at a) 100 ᵒC b)110ᵒC,c)120ᵒC,d)130ᵒC,e)140ᵒC和f)150ᵒC。The temperatures specified are the set temperature of the hotpate for both the substrate and precursor solution prior to spin coating ........................................................................................ 97 Figure 39.用热铸造方法合成的Agbii 4的SEM图像,标记的温度是旋转涂层之前的底物和前体溶液的热板的温度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。agbii 4的SEM图像在110°C时以22s的抗可溶性滴注在110°C时合成。a)未使用反溶剂,b)氯苯,c)IPA,d)甲苯........................................................................................................................................................................................................................................................................................................................................... 99图41.sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100