数字核酸记忆(DNAM)利用DNA的非挥发性,长期数据存储的DNA的特殊信息密度,稳定性和能源效率,非常适合档案目的。通过使用DNA折纸,DNAN创建了一个信息矩阵,其中荧光单链DNA(SSDNA)链结合以表示二进制1和0,从而革新了数据存储和读取的方式。使DNAM适用于广泛使用,开发了提高SSDNA PSCAF生产的有效方法是必不可少的。
在针对入侵病原体的免疫反应中的中心作用[2]。虽然DNA甲基化(DNAM)是最广泛研究的表观遗传修饰,但以前被认为是相当稳定的,但越来越清楚的是,DNAM变化可以响应不断变化的环境而相对较快。的确,积累的证据表明,暴露于病原体可以改变宿主免疫细胞中的DNAN模式[3-6],这可以促进宿主免疫或帮助病原体逃避免疫系统。此外,感染后表观遗传变化可以持续存在,并导致基因组上的表观遗传记忆或“印记”,并可能对长期疾病产生后果[7]。了解DNAM,免疫反应和细菌感染之间的复杂相互作用对于鉴定新的诊断工具和治疗策略至关重要,这对于LNB急需,尤其是在抗生素治疗后缓慢康复的患者中。
DNA甲基化(DNAM)已在陆地植物中对环境变化进行了深入的研究,但在海洋植物中,其时间尺度的动态变化仍未开发。海草posidonia oceanica是地球上生长最慢的植物中的最慢,特别容易受到海洋变暖和局部人为压力的影响。在这里,我们分析了从富营养化的沿海地区收集的植物中DNAM变化的动力学(即oli-gotrophic,ol;富营养化,欧盟),并暴露于非生物压力源(营养,温度升高及其组合)。全球DNAM(%5-MC)的水平和DNAM参与的关键基因的表达在一次,两周和五周后评估。结果表明,根据环境刺激,暴露时间和植物的起源,植物之间存在明显的不同。%5-MC的水平在最初的压力暴露期间较高,尤其是在OL植物中,该植物上调了几乎所有涉及DNAM的基因。相反,欧盟的植物显示出较低的表达水平,在长期暴露于压力源的情况下,特别是对温度的影响。这些发现表明,在压力暴露期间,DNAM在大洋洲P. Oceanica中是动态的,并强调了环境表观遗传变化可能与调节适应和表型差异有关,具体取决于当地条件。
摘要:背景:DNA 甲基化 (DNAm) 是整个发育过程中基因表达的关键表观遗传调节因子。发育中的胎儿大脑是一种高度动态的组织,但我们对整个发育过程中表观遗传变异的关键驱动因素的理解有限。结果:因此,我们使用全基因组亚硫酸盐测序评估了胎儿皮层中超过 3900 万个位点的基因组甲基化,并发现了甲基化水平在整个发育过程中动态变化的位点和区域。我们发现这些位点的 DNAm 与附近的基因表达相关,并在胎儿脑组织中富含增强子染色质状态。此外,这些位点富含与精神疾病相关的基因和与神经发生有关的基因。我们还发现在胎儿发育过程中,两性之间存在常染色体 DNAm 差异,尽管这些差异的功能后果不太明显。我们最后证实,这一关键时期的动态甲基化是特定的 CpG 甲基化,CpH 甲基化水平非常低。结论:我们的研究结果详细介绍了胎儿时期的大脑发育,也为成年后精神特征的发病机制提供了线索。简介:DNA甲基化(DNAm)在基因表达、组织分化和从胎儿期到青春期乃至更远的发育的表观遗传调控中起着重要作用。研究表明,在人脑中,DNAm 在出生后五年内特别具有可塑性,无论是在 CpG 还是 CpH(H=A、T 或 C)位点 [1] 。关键位点的甲基化水平随时间而变化,这些变化导致基因表达和剪接的调整。这些关键区域也与精神分裂症等神经发育障碍有关,其中早期失调起着至关重要的作用 [2, 3] 。DNAm 是一种有吸引力的表观遗传机制,可用于研究死后人类脑组织,因为它代表了遗传和环境效应之间的相互作用。饮食变化 [4] 、吸烟 [5] 和砷 [6] 等外部因素与 DNAm 水平的整体和位点变化有关。为了更好地理解精神疾病发展中异常 DNAm 模式的原因和后果,我们必须首先了解正常的情况。阐明产前发育过程中的典型甲基化变化既可以深入了解出生后发育大脑中活跃的基因表达和分子通路,也可以为识别出生后疾病状态下的异常 DNAm 提供基线,因为导致精神疾病症状的病理变化可能在疾病发作前几十年 [7] 。背外侧前额皮质 (DLPFC) 是大脑整个发育过程中的一个动态区域,对运动规划、概念组织和工作记忆至关重要,精神分裂症患者中,这种功能经常失调 [8]。之前使用微阵列量化 DNAm 的研究表明,DLPFC 中存在许多 DNAm 变化
背景 COVID-19 后症状 (PCC) 影响全球数百万人,表现为持续的多系统症状。尽管有各种假设,但 PCC 背后的生物学机制仍不清楚。先前的研究将 PCC 与血液免疫细胞 DNA 甲基化组的改变联系起来,但其对肺细胞的随时间影响仍然未知。方法 2020-2021 年 COVID-19 后出现持续症状的患者 (n=13) 在入院时和一年后捐献了血液和痰液样本。同时收集症状和生理测试数据。纵向分析 DNA 甲基化 (DNAm) 谱并与健康对照者的大流行前 DNAm 数据进行比较。结果虽然外周血单核细胞 (PBMC) 没有显着变化,但在中性粒细胞和巨噬细胞富集级分中观察到纵向 DNAm 变化。这些变化与症状和生理指标显着相关。通路分析显示与心脏功能有关的细胞过程富集。结论我们确定了与心脏功能相关通路相关的肺免疫细胞纵向 DNAm 变化。这些变化与症状负担和心肺指标相关。结果提示了潜在的疾病机制并有助于诊断工具的开发。
尽管乳腺癌筛查技术的进步和对疾病的广泛研究,但乳腺癌仍然是美国女性(美国)的癌症负担最重,而疾病差异显着。自2004年以来,乳腺癌发病率增加了0.4%,估计表明,八分之一的女性将受到这种诊断的影响(1)。在过去的十年中,早期发作乳腺癌的诊断率在50岁之前的诊断率显着增加(2,3)。早期发作乳腺癌通常是一种更具侵略性的疾病类型,在后期被诊断出来,预后通常很差(2)。生存早期发作乳腺癌的患者面临着影响其生活质量的不同生存问题(4)。提高乳腺癌率,尤其是早期发作疾病,是一个紧迫的公共卫生问题,需要新的临床和转化方法来遏制这些疾病趋势。对加速生物年龄的仔细考虑可能为预防疾病提供有希望的途径,特别是对于早期发作乳腺癌。年龄仍然是乳腺癌的最强预测因素之一(5,6),因此尚不清楚为什么在美国发生早期乳腺癌发生率的增加,一种潜在的途径是了解早期发作乳腺癌的增长趋势正在确定加速生物年龄在乳腺癌风险中的作用。这些共同的分子标志在预测乳腺癌风险方面的发现是矛盾的(9,11)。生物年龄的标志是人体系统中的渐进式下降也称为衰老的标志(7,8),而这些下降会增加对疾病和死亡的脆弱性。与乳腺癌的发展有关的九个标志(7,8),这些标记是:基因组不稳定性(9),端粒损耗(9),表观遗传变化(10),过失调节的营养感应(11,12),Mitochondirialialialialialial nirial dimochrial dipfuntiment(12),互动(11),和11个(11)(11)(11)(11)(11)(11)。 迄今为止,DNA甲基化的表观遗传学改变是生物年龄最强的预测指标(13,14)。 DNA甲基化是一种表观遗传标记物,在CpG(细胞质 - 磷酸 - 瓜氨酸)岛上最常发生在胞嘧啶核苷酸上,并且通常与年龄相关(15)。 DNA甲基化(DNAM)是癌症进展的肿瘤生成和病理生理学的既定标志(14)。 考虑到DNAM捕获的生物年龄和年代年龄之间的差异,以及通过DNAM进行癌症发展的风险增加为预防疾病的调查提供了关键的地点。 本评论的重点是阐明有关乳腺癌风险中DNA的现有证据,作为监视和干预的潜在标志,因为DNAM已被发现可以通过生活方式和心理干预措施可逆,可以修改(16,17)(图1)。 使用机器学习开发表观遗传时钟,以在整个基因组的CPG位点创建多元加权总和,以评估生物年龄(14)。与乳腺癌的发展有关的九个标志(7,8),这些标记是:基因组不稳定性(9),端粒损耗(9),表观遗传变化(10),过失调节的营养感应(11,12),Mitochondirialialialialialial nirial dimochrial dipfuntiment(12),互动(11),和11个(11)(11)(11)(11)(11)(11)。 迄今为止,DNA甲基化的表观遗传学改变是生物年龄最强的预测指标(13,14)。 DNA甲基化是一种表观遗传标记物,在CpG(细胞质 - 磷酸 - 瓜氨酸)岛上最常发生在胞嘧啶核苷酸上,并且通常与年龄相关(15)。 DNA甲基化(DNAM)是癌症进展的肿瘤生成和病理生理学的既定标志(14)。 考虑到DNAM捕获的生物年龄和年代年龄之间的差异,以及通过DNAM进行癌症发展的风险增加为预防疾病的调查提供了关键的地点。 本评论的重点是阐明有关乳腺癌风险中DNA的现有证据,作为监视和干预的潜在标志,因为DNAM已被发现可以通过生活方式和心理干预措施可逆,可以修改(16,17)(图1)。 使用机器学习开发表观遗传时钟,以在整个基因组的CPG位点创建多元加权总和,以评估生物年龄(14)。与乳腺癌的发展有关的九个标志(7,8),这些标记是:基因组不稳定性(9),端粒损耗(9),表观遗传变化(10),过失调节的营养感应(11,12),Mitochondirialialialialialial nirial dimochrial dipfuntiment(12),互动(11),和11个(11)(11)(11)(11)(11)(11)。迄今为止,DNA甲基化的表观遗传学改变是生物年龄最强的预测指标(13,14)。DNA甲基化是一种表观遗传标记物,在CpG(细胞质 - 磷酸 - 瓜氨酸)岛上最常发生在胞嘧啶核苷酸上,并且通常与年龄相关(15)。DNA甲基化(DNAM)是癌症进展的肿瘤生成和病理生理学的既定标志(14)。考虑到DNAM捕获的生物年龄和年代年龄之间的差异,以及通过DNAM进行癌症发展的风险增加为预防疾病的调查提供了关键的地点。本评论的重点是阐明有关乳腺癌风险中DNA的现有证据,作为监视和干预的潜在标志,因为DNAM已被发现可以通过生活方式和心理干预措施可逆,可以修改(16,17)(图1)。表观遗传时钟,以在整个基因组的CPG位点创建多元加权总和,以评估生物年龄(14)。通过此测量工具捕获了三个不同的生物过程:基于DNAM的年龄估计量(13),生理过程
长卷(也称为covid-19 [PASC]的急性后遗症)是指幸存者在严重急性呼吸综合征冠状病毒2(SARS-COV-2)感染和急性冠状病毒疾病2019(Covid-19)疾病后可能经历的慢性症状。长期的共同是全球公共卫生,医疗和护理挑战,影响了数百万人。作为一种新兴和不断发展的综合症,长期的共同表现出了许多临床体征和症状的组合,医疗保健提供者和科学家正在分类和努力理解。在这个小评论中,我们介绍了病毒和宿主相互作用的DNA甲基化(DNAM)的表观遗传战场。我们提出了这种病毒宿主相互作用引起的DNAM现象和标记的方法可能有助于阐明长期相互作用的病理和预后。在撰写本文中,对长期共vid患者的DNAM特征的了解受到限制(2024年初),研究人员已经注意到急性Covid-19引起的DNAM标记的部分可逆性和潜在的长期持久性。在其他冠状病毒疾病中看到的长期后遗症,例如严重的急性呼吸综合征(SARS)和中东呼吸综合征(MERS),是长期参考的潜在参考,以努力进行更精确的诊断和疾病特征,更好地预测爆发,并使用新药物和免疫药物的发展。
摘要:胎儿酒精谱系障碍(FASD)包括神经发育障碍和与产前酒精暴露有关的身体出生缺陷。以前,我们试图通过研究FASD个体的基因组DNA甲基化(DNAM)促进FASD的表观遗传生物标志物与健康对照组相比。在这项研究中,我们在以前的FASD队列的一部分中产生了其他基因表达素,涵盖了受影响最严重的个体,以检查DNAM状态改变基因表达的功能整合效应。我们鉴定了与基因表达变化相关的六个差异甲基化区域(注释给SEC61G,REEP3,ZNF577,HNRNPF,MSC和SDHAF1基因)。据我们所知,这项研究是评估FASD中全血基因表达和DNAM基因表达关联的第一个。 我们的结果呈现出对全血FASD分子足迹的新颖见解,并为将来研究多摩学生物标志物进行了诊断FASD诊断的机会。据我们所知,这项研究是评估FASD中全血基因表达和DNAM基因表达关联的第一个。我们的结果呈现出对全血FASD分子足迹的新颖见解,并为将来研究多摩学生物标志物进行了诊断FASD诊断的机会。
摘要 精神药物被广泛用于治疗精神障碍,其普及率日益提高,并在精神障碍的治疗中发挥着重要作用。然而,这些药物对身体的影响各不相同,特别是在分子水平上,影响DNA甲基化(DNAm),这是调节基因表达和关键神经过程的重要表观遗传过程。因此,本文献综述研究旨在分析精神药物对表观遗传过程的影响,重点关注 DNAm。使用与该主题相关的关键词组合在 PubMed、ScienceDirect 和虚拟健康图书馆 (BVS) 数据库中搜索文章,总共搜索到 13 篇科学出版物来撰写这篇评论。结果表明,精神药物影响大脑和外周组织中的DNAm和基因表达。因此,精神药物似乎在表观遗传调节中发挥着重要作用,并有可能影响神经健康和精神障碍的治疗。关键词:DNA甲基化。精神药物。使用药物。知识领域:分子生物学。介绍