正文 图 1 至 2 正文 我们怀着极大的兴趣阅读了 Zhou 等人的论文 1,其中描述了一种能够从极低输入(SILVER-Seq)进行细胞外 RNA 测序的新方法。与我们之前的研究 2,3 相比,检测到的基因数量之多令我们感到好奇,并且注意到可重复性较低。我们假设这两个观察结果都可能源于 DNA 污染。因此,我们重新分析了 SILVER-Seq 数据以确定测序读数中的 DNA 信号程度(方法见 https://github.com/jasperverwilt/SILVER-Seq_comment)。首先,我们分析了映射到不同基因组区域的读数分数。我们注意到这些分数与基因组中观察到的分布非常相似(图 1A)。具体而言,不到 5% 的读数映射到外显子区域,而我们自己的细胞外 RNA 测序数据 3 显示外显子读数平均为 35%。其次,我们分析了与剪接序列对应的读取,因为它们在 RNA 中预计相对丰富。然而,我们发现与剪接序列对应的读取仅占总唯一映射读取的 0.22%,而在我们自己的 RNA 测序数据中,它们占 17.8%,高出 81 倍(图 1B)。第三,我们从数据中生成了一名乳腺癌女性患者(SRR9094442)和一名健康男性对照(SRR9094547)的拷贝数谱。癌症患者的谱图显示出明显的拷贝数变化模式(例如 5、11 和 20 号染色体),这是使用无细胞 DNA 数据时通常发现的结果(图 2A)。关于男性对照的拷贝数谱,它显示出几乎完全平坦的拷贝数谱,X 和 Y 染色体的拷贝数水平为常染色体的一半(图 2B),这再次符合正常对照的无细胞 DNA 的预期。最后,SILVER-Seq 读数的链状性评估无法明确确认数据来自 RNA(图 1C)。这可能意味着文库制备方法没有保留片段的链方向(本文未指定的特征),或者数据主要来自 DNA。我们的重新分析提供了令人信服的证据,支持大多数 SILVER-Seq 数据来自 DNA,而不是细胞外 RNA。尽管作者进行了旨在防止此问题的 DNase 处理,但没有进行质量控制来验证其有效性。我们假设无细胞 DNA 的数量太高,或者血清中存在的抑制剂阻碍了有效的酶去除 DNA。此外,作者没有进行任何数据分析,专门评估其测序数据中是否存在 DNA 信号,例如本文报道的那些。重要的是,我们想强调的是,我们的观察结果不会削弱 SILVER-Seq 的潜在效用。这封信的目的是提醒大家当前
A3A 和 eA3A 表达。A3A 表达构建体 (Addgene #109231) 之前已有描述,可用于纯化 A3A 作为融合蛋白 (MBP-A3A-His),可进一步加工以生成分离的 A3A 结构域。32,33 对于 eA3A (A3A-N57G),N57G 突变是通过 Q5 定点诱变 (New England Biolabs, NEB) 引入的。A3A 和 eA3A 构建体的细菌表达之前已有详细描述。 33 将纯化的 MBP-A3A-His、MBP-eA3A-His 或分离的 A3A 在 50 mM Tris-Cl(pH 7.5)、50 mM NaCl、10% 甘油、0.5 mM DTT 和 0.01% Tween-20 中透析过夜,并使用 BSA 标准曲线确定蛋白质浓度。基于 SwaI 的脱氨酶对 ssDNA 和嵌合底物的活性。5'-荧光素 (FAM) 荧光标记的底物 S35-dC 或具有单个靶核糖胞嘧啶的匹配底物(在其他 DNA 骨架中)(S35-rC)由 Integrated DNA Technologies (IDT) 合成,以及相关产品对照(S35-dU 和 S35-rU)。在最佳 A3A 反应条件(最终为 20 mM 琥珀酸:NaH 2 PO 4:甘氨酸 (SPG) 缓冲液 pH 5.5,0.1% Tween-20)下,用 6 倍稀释的未标记 A3A(从 1 µM 到 4 pM)处理 100 µM 寡核苷酸。反应在 37 ˚C 下进行 30 分钟,然后终止(95 ˚C,10 分钟)。然后加入 200 nM 互补链并退火。加入 SwaI (NEB),在室温下消化过夜。加入甲酰胺上样缓冲液,样品加热变性(95 ˚C,20 分钟),然后在 50 ˚C 下在 20% 变性 TBE/尿素聚丙烯酰胺凝胶上运行。使用 Typhoon 成像仪(GE Healthcare)上的 FAM 滤光片对凝胶进行成像。使用 ImageJ 中的面积量化工具进行定量分析。720 碱基对 ssDNA 底物的合成。为了生成 ssDNA,使用 720 bp gBlock 基因片段 (IDT) 作为模板 (补充图 2a),并使用 Taq 聚合酶 (NEB) 进行扩增,采用指数后线性 (LATE) PCR 反应方案,该方案采用相对于磷酸化的反向引物过量的正向引物。32 对反应物进行纯化 (NucleoSpin、Fisher),然后在 37 ˚C 下用 核酸外切酶处理 1 小时以降解磷酸化链,然后进行热失活 (90 ˚C,10 分钟)。然后将产物在 2% 琼脂糖凝胶上运行,并使用凝胶 DNA 回收试剂盒 (Zymoclean) 回收 ssDNA。通过乙醇沉淀进一步纯化 ssDNA,并使用 Qubit ® 荧光计 (ThermoFisher) 测量其浓度。对于一个重复,ssDNA 以大分子寡核苷酸 (IDT) 的形式获得,并通过乙醇沉淀进一步纯化。720 聚体 RNA 底物的合成。使用 720 bp 基因块 (IDT) dsDNA 作为模板,在推荐条件下使用 TranscriptAid Enzyme Mix (ThermoFisher) 通过体外转录生成 RNA,并在 37 ˚C 下孵育两小时。然后通过苯酚-氯仿提取和乙醇沉淀纯化 RNA。将样品重新悬浮在无核酸酶的水中,并进一步用 MspI、XbaI 和 AclI 限制性酶 (NEB) 处理以消化任何剩余的 DNA 模板。在 37 ˚C 下孵育 1 小时后,使用 RNA Clean and Concentrator-5 试剂盒 (Zymo Research) 纯化 RNA。为了进一步确保完全去除模板 DNA,在 37 ˚C 下用 DNase I (Ambion) 处理 RNA 30 分钟。重复纯化 (RNA Clean and Concentrator-5),并使用 Qubit ® 荧光计测量纯化 RNA 的浓度。通过“预测二级结构网络”预测 720 聚体中几个中尺度区域的二级结构
Q11347:M。Lenz等。 短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。 ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。 miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。Q11347:M。Lenz等。短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。 ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。 miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。英国药理学学会2023; 180(15):1965-1980代理:异丙肾上腺素盐酸盐载体:PBS;抗坏血酸钠;路线:SC;物种:小鼠;应变:C57BL/6J;泵:1002;持续时间:14天; ALZET评论:异丙肾上腺素(15 mg/kg/day);对控件接收到带车的MP;动物信息:男性,11周大;发表OP。echinochrome可防止小鼠心肌梗塞后与硫化物分解代谢相关的慢性心力衰竭。海洋药物2023; 21(1):代理:echinochrome a车辆:盐水;路线:IP;物种:小鼠;应变:C57BL/6J;泵:没有说明;持续时间:7天; Alzet评论:剂量:( 0.2,0.6,2.0 mg/kg/day);剂量依赖;对控件接收到带车的MP;动物信息:9-12周大; ECH-A是一种抗氧化剂;心血管(缺血,心肌梗塞,心力衰竭)Q10998:W。Simonides等。在小鼠慢性肾上腺素能刺激引起的补偿和代偿性心脏肥大中,血浆和心脏左心室的甲状腺激素水平发散。代谢物2023; 13(308):代理:异丙肾上腺素;苯肾上腺素:水,无菌,蒸馏;抗坏血酸;路线:SC;物种:小鼠;应变:C57BL6/J-DIO3FL/FlmerCremer +/-(CD3KO-CS);泵:1007d; 1002;持续时间:7天; 14天; Alzet评论:剂量:30 mg/kg/d;使用0.1%的抗坏血酸;对控件接收到带车的MP;动物信息:12周;心血管; (心室肥大,心力衰竭)Q10996:S。Shen等。leon嘌呤通过抑制MAPK和NF-kappab途径减弱血管紧张素II诱导的心脏损伤和功能障碍。1C;心血管;治疗指示(高血压心力衰竭);Phytomedicine 2023;108(154519 Agents: Angiotensin II Vehicle: Not Stated; Route: SC; Species: Mice; Strain: C57BL/6; Pump: 1002; Duration: 4 weeks; ALZET Comments: Dose (1000 ng/kg/min); Controls received mp w/ vehicle; animal info: non-hypertensive; Blood pressure measured via Tail cuff; Blood pressure measurement (p.2)图
关键词:轨道式振荡生物反应器 (OSB)、禽类 AGE1.CR.pIX 悬浮细胞、流感病毒、动物疱疹病毒、腺相关病毒 (AAV)、人胚胎肾 (HEK) 293 细胞、一次性灌注至高细胞密度、制造。悬浮细胞的预培养在摇瓶中成功完成。特别是新开发的设计细胞在高摇动频率下在摇瓶中传代多达 100 次,然后完美适应在具有 pH 控制和最大氧气供应(通常高于 80% pO 2 )的 CO 2 培养箱中生长。当它们随后被转移到搅拌槽生物反应器进行扩大时,特定细胞生长率通常较低,并且细胞对通过酸/碱添加和由于潜水器放气(气泡)而产生的剪切应力的 pH 控制变得敏感。禽类 AGE1.CR.pIX 和人类 HEK 293 细胞也出现了这种情况。为了避免这些问题,评估了在振荡模式下的扩大规模。这里我们介绍了 SB10-X OSB 生物反应器在袋子设计和控制单元改进方面的最新进展。引入了一种新的控制策略,从而可以更快、更精确地控制 pH 和 DO。此外,还优化了灌注袋,以便可以轻松连接一个或两个 TFF ATF 系统。这两项发展都带来了更强大的 SB10-X 系统,可以轻松执行批量、补料分批或灌注运行。在 10 L 一次性标准袋中,在化学定义的培养基 CD-U3(Biochrom-Merck,德国)中以 70 rpm 的摇动频率培养 Avian AGE1.CR.pIX 细胞(ProBioGen AG,德国)。对于灌注,使用了交替切向流系统(ATF2,Repligen,500 kDa 截止值)。感染流感病毒 A/PR/8/34 (H1N1) 后,MOI 为 0.001,工作体积从 5 升增加到 9 升,同时保持灌注。使用不同的填充体积评估 25 和 50 x 10 6 细胞/毫升的细胞浓度,以了解顶部空间通气的影响。总体而言,可以获得 3500 个病毒体/细胞的非常高的细胞特异性病毒产量,导致 HA 滴度高达 3.7 log 10(HA 单位/100 µL),感染滴度高达 8.8 x 10 9 TCID 50 /毫升。基于重组 AAV 的载体不仅是基因治疗目的的合适载体,而且还能够诱导针对各种抗原的强烈、主要是细胞的免疫反应。到目前为止,AAV 生产主要使用瞬时转染的贴壁人类 HEK 293 细胞(例如在细胞堆栈中),这对大规模 AAV 生产来说是一个重大挑战。在这里,我们测试了内部适应悬浮生长的 HEK 293 细胞,以通过一种允许简单扩大规模的过程生产 AAV9 的能力。因此,HEK 293 悬浮细胞在 5 L 化学定义的无血清培养基中培养,细胞密度为 1 x 10 6 个细胞/毫升,使用 SB10-X OSB 生物反应器,摇动频率为 65 rpm。24 小时后以 70 rpm 的振荡频率进行聚乙烯亚胺 (PEI) 介导的三重转染(包括 GFP 报告基因)。最后,转染后 48 小时,收获细胞和上清液进行 AAV 分离,并测定裂解物中 DNase I 抗性载体颗粒 (DRP) 的数量。由于转染效率高(基于 GFP 报告基因的转染率 >90%)且 SB10-X 系统中整个批处理过程性能良好,因此达到了 1.4 x 10 12 DRP/ml 或 7 x 10 15 DRP/批(5 L)范围内的制造相关 AAV 滴度。总之,在轨道上生产病毒可能是创新疫苗制造的一种有吸引力的替代方案。
焦磷酸测序:Roche模板由EMPCR 1制备,其中1-20万珠沉积在PTP井中。较小的珠,带有连接的硫酸酶和荧光素酶围绕模板珠。单个DNTP依次流过井,以预定的顺序分配。在掺入补体DNTP时,释放的PP I被转换为ATP,从荧光素蛋白到羟基二耐蛋白的氧化产生光。读取平均400个基础作为流程图。对于均聚物,重复多达六个核苷酸,添加的DNTP的数量与光信号成正比。插入是最常见的错误类型,其次是删除。通过连接测序:将约1亿个EMPCR的模板珠沉积在载玻片上。在退火时,添加了1,2个探针的库。适当的条件使选择性杂交和探针结扎到互补位置。1,2探针的第一个(y)和第二(z)位置被设计为审讯库,因此16个二核苷酸由四种染料编码。在四色成像之后,将带状的1,2探针化学裂解以产生5'-PO 4组(P)。杂交,连接,成像和裂解的循环又重复了六次。然后从模板中剥离扩展引物,并使用N – 1底漆进行第二个连接弹,该底漆将询问底座重置为左侧的一个位置。询问每个基础两倍,提高了颜色调用的准确性。随后发生了七个连接周期,然后再进行三个结扎弹。然后将35个数据位组成的字符串在色彩空间中编码,然后对准参考基因组以解码DNA序列。替换是最常见的错误类型。可逆终结器:DNA片段的Illumina Bridge放大是在载玻片的八个通道上随机分布的,高密度向前和反向引物共价附加到其上。固相扩增可从单个ssDNA模板产生约8000万个MC。将底漆退火到每个MC中模板的自由末端。聚合酶延伸,然后终止从四个RTs组中的DNA合成,每组用不同的染料标记。未合并的RT被洗净,通过四颜色成像进行基础识别,并通过化学裂解去除阻塞和染料组以允许下一个周期。给定MC的颜色图像提供了〜45个基础的读取。替换是最常见的错误类型。使用RTS进行单分子测序:Helicos数十亿个未夸大的ssDNA模板是用poly(da)尾巴制备的,这些尾巴与聚(DT)引物杂交,共同连接到载玻片上。对于一通测序,该引物 - 模板复合物就足够了。两通序测序涉及复制模板链,删除原始模板,并退火向表面(未显示)。与Illumina的RT不同,这四个Helicos RT用相同的染料标记,并以预定的顺序单独分配。融合事件导致荧光信号。使用单分子消除了Dephasing的问题,其中给定MC内的数千个复制模板不会有效地扩展其引物。删除是最常见的误差类型,可以通过提供约25个基本共识读取的两次测序可大大降低。的应用和挑战100篇论文描述了这些创新的成果。虽然改进继续,但读取长度限制,错误类型和频率显着影响组装策略。对于简短(<100个基本)读取平台,通过映射到参考基因组来指导组装。结合Sanger和Roche数据(100个基本读数)改善了从头组件2,并且随着焦磷酸测序读取长度的改进,使用混合Roche(250键读数)和Illumina数据进行了改善,已经描述了从头组装。最近使用Roche 4和Illumina平台报告了第一个个性化基因组测序项目。Roche,Illumina和AB平台在1,000个基因组项目中被用于生成人类遗传变异的详细图表以及人类微生物组项目,以将微生物组动态与人类健康相关联。应用不限于测序基因组。共识计数分析5最近出现了,从而实现了转录因子结合,mRNA剪接,DNA甲基化,小RNA,染色质结构和DNase超敏位点的全局分析。配对的测序方案。这些不仅对从头组件很重要,而且对于识别结构变化和映射mRNA剪接同工型。展望未来,太平洋生物科学,多佛系统(Polonator G.007),Visigen Biotechnologies,Lasergen,Inc。,Intelligent Bio-Symys,完整的基因组学和牛津Nanopore技术等公司的平台开发。