senolotics是针对细胞衰老的小分子,已成为增强健康跨度的潜在疗法。但是,它们对表观遗传时代的影响仍然没有被研究。这项研究旨在评估达沙替尼和槲皮素(DQ)鼻溶剂对DNA甲基化(DNAM),表观遗传年龄和免疫细胞亚群的影响。在I期试点研究中,有19名参与者接受了DQ 6个月的DQ,而DNAM在基线,3个月和6个月时进行了测量。在3和6个月的第一代表观遗传钟和有丝分裂时钟中观察到表观遗传年龄的加速度显着增加,并且端粒长度显着下降。但是,在第二代和第三代时钟中没有观察到显着差异。基于这些发现,随后的研究评估了DQ与Fisetin(DQF)的组合,Fisetin(DQF)是一种众所周知的抗氧化剂和抗衰测的鼻溶性分子。一年后,有19名参与者(包括最初研究中的10名参与者)接受了DQF 6个月的DQF,DNAN在基线和6个月时进行了评估。值得注意的是,在治疗中添加fisetin会导致表观遗传年龄加速的不显着增加,这表明菲塞丁对DQ对表观遗传衰老的影响有潜在的减轻作用。此外,我们的分析在DQ和DQF治疗组之间揭示了免疫细胞比例的显着差异,为在表观遗传钟的演化中观察到的不同模式提供了生物学基础。这些发现需要进一步的研究,以验证和全面了解这些综合干预措施的含义。
补充材料补充注释1:基于DNAM的血浆蛋白替代物DNAM Grimage2的模型由九个基于DNAM的血浆蛋白,基于DNAM的PACK年龄,年龄和性别组成。下面我们简要描述了这些九种血浆蛋白。A1C(血红蛋白A1C,HBA1C;糖基化血红蛋白;糖化血红蛋白)是一种血液检查,在过去3个月中显示出平均血糖(葡萄糖)水平。该生物标志物在诊所被广泛用于检查糖尿病前期或糖尿病,并有助于随着时间的流逝指导糖尿病治疗(http://uclahealthib.staywellsoltessolutionsonline.com/bedsid e/167,a1c)。先前的研究还表明,较高水平的A1C与心血管心脏病和死亡率有关[1,2]。A1C的对数尺度是DNAM Grimage2中的新组件。ADM(肾上腺肾上腺素)是血管舒张剂激素。血浆ADM最初从肾上腺中分离出来,患有高血压和心力衰竭的个体增加[3]。最近的一项研究表明,ADM参与了小鼠和人脑老龄化的年龄相关记忆丧失[4]。B2M(β-2微球蛋白)是主要组织相容性复合物1(MHC I)分子的组成部分。血浆B2M是一种与心血管疾病,肾功能,炎症严重程度相关的临床生物标志物[5]。b2m是与认知和再生功能相关的促成因素,并表明B2M可以在老年中以治疗为目标[6]。先前的一项研究表明,衰老血液中的全身性B2M积累促进了与年龄相关的认知功能障碍并损害了小鼠模型[6]。胱抑素C或胱抑素3(以前是伽马痕迹,γ-球蛋白或神经内分泌碱性多肽)主要用作肾脏功能的生物标志物。血浆胱抑素-C是一种临床相关的生物标志物,表明肾脏功能[7]。胱抑素-C似乎在心血管疾病[8]或与阿尔茨海默氏病相关的淀粉样蛋白沉积中起作用[9]。C反应蛋白(CRP)测试在临床上用于在体内发现炎症,可能是由不同类型的疾病引起的,例如感染或自身免疫性疾病,例如类风湿关节炎或炎症性肠病,(https://uclahealthib.staywellib.staywellib.staywellsolinestonline.com/searce_______________________________serium c_serim c_r)先前的几项研究表明,CPR蛋白浓度为
目标:非综合性口面裂(OFCS)病因涉及多个遗传和环境因素,具有超过60个识别的风险基因座;但是,他们仅占估计风险的少数。表观遗传因子(例如差异DNA甲基化(DNAM))也与OFCS风险有关,并且可以改变不同裂缝类型的风险并改变OFCS渗透率。dnam是将甲基(CH3)组的共价添加到核苷酸胞嘧啶中,可能导致靶基因表达变化。DNAM可能会受到环境影响和通过甲基化定量基因座(MEQTL)的影响。我们假设异常DNAN和基因表达的改变在OFC的病因中起着关键作用,并且某些影响OFCS风险的常见遗传变异是通过影响DNAM的。方法:我们使用了来自10个裂口相关的SNP和全基因组DNA甲基化数据(Illumina 450K阵列)的基因型,用于409例OFC和456个对照,并鉴定出23个与裂口相关的MEQTL。然后,我们使用362 cleft-不一致的SIB对的独立队列进行复制。我们使用甲基化特异性QPCR来测量每个CpG位点的甲基化水平,并结合基因型和甲基化数据,用于使用线性模型中的R package Matrixeqtl进行每个SNP-CPG对的相互作用分析。我们还进行了一个配对的t检验,以分析兄弟姐妹对的每个成员之间的DNA甲基化差异。配对t检验显示CG06873343(TTYH3)(p = 0.04)的显着差异; CG17103269(LPIN3)(P = 0.002)和CG19191560(LGR4)(p = 0.05)。结果:我们复制了9个MEQTL,显示了RS13041247(MAFB)-CG18347630(PLCG1)(P = 0.04)之间的相互作用; RS227731(NOG)-CG08592707(PPM1E)(p = 0.01); RS227731(NOG)-CG10303698(CUEDC1)(p = 0.001); RS3758249(FOXE1)-CG20308679(FRZB)(p = 0.04); RS8001641(SPRY2)-CG19191560(LGR4)(p = 0.04); RS987525(8Q24)-CG16561172(MYC)(P = 0.00000963); RS7590268(THADA)-CG06873343(TTYH3)(p = 0.04); RS7078160(VAX1)-CG09487139(p = 0.05); RS560426(ABCA4/ARHGAP29)-CG25196715(ABCA4/ARHGAP29)(p = 0,03)。结论:我们的结果证实了以前的证据,即通过GWAS研究检测到的某些常见的非编码变体可以通过表观遗传机制(例如DNAM)影响OFC的风险,例如DNAM最终会影响和调节基因表达。鉴于在大多数OFC基因组广泛的关联研究中,非编码SNP的流行率很高,我们的发现可能会解决主要的知识差距,例如缺少遗传力,降低的渗透率和与OFCS表型相关的可变表达性。
简介精神病学中的精确医学仍处于起步阶段。要建立患者守则的治疗,需要预测治疗反应的足够的识别器。电动性疗法(ECT)被认为是药物治疗重大抑郁症(MDD)最有效的选择之一,但据报道缓解率低于50%。方法由于应力反应系统的表观遗传学似乎在MDD中起作用,因此我们通过Sanger测序分析了编码糖皮质激素受体(NR3C1)和proopiomelananocortin(POMC)的基因的DNA甲基化(DNAM)。进行分析,血液是在MDD患者(n = 31)的第一个和最后一个ECT之前和最后一次ECT之前和之后采取的,未经细化的抑郁控制(UDC; n = 19,基线)和健康对照组(HC; n = 20,基线)。与其他两个组相比,UDC中NR3C1中的基线DNAM显着降低(0.014(±0.002),ECT:0.031(±0.001),HC:0.024(±0.002)(±0.002); p <0.001),而pomc,poMC,ect患者最高的0.2(n.25)(0.25)(c)(c)(c) UDC:0.156(±0.015),HC:0.162(±0.014);NR3C1 M和POMC M在第一次ECT后降低(NR3C1:P <0.001; POMC:P = 0.001),与NR3C1中的非反应者相比,响应者的甲基化较小(P <0.001)。讨论我们的发现表明,这两个基因可能在抑郁症和NR3C1的编织中起作用,可能与ECT响应预测有关。
表观遗传时钟参数DNAM年龄加速度是衰老的有前途的生物标志物。我们最近仅基于七个胞嘧啶 - 磷酸 - 瓜氨酸位点描述了一个表观遗传时钟,该位点与年龄高度相关。这项研究的目的是检查这种表观遗传时钟与老年人与心血管健康(CVH)的关系。我们使用了柏林老化研究II的数据(基本II; 1,671名参与者; 68.8±3.7岁)。CVH使用两个不同的CVH分数(Framingham风险评分(FRS)和Life的Simple 7(LS7))进行操作。调整潜在混杂,例如通过性别,我们进行了回归分析。LS7分数较高,即女性比男性更有利(8.8±2 vs. 8.2±2,p <0.001)。DNAM年龄加速度与FRS(β= 0.122,p = 0.028)和LS7(β= - 0.804,p = 0.032)相关。更详细地,体育活动(β= - 0.461,p = 0.05),HDL-胆固醇(β= 0.343,p = 0.03)和总胆固醇(β= -0.364,p = 0.002)与表观遗传年龄的加速相关。我们提供证据表明,更好的CVH与通过表观遗传时钟测量的减速生物衰老有关。
将改善人口健康洞察的全球多样性国际合作“ divese e divemiology p Arteyhers(Deep)的目的是通过发现全球人群中观察到的全球人群中观察到的疾病风险的影响,借助Indimitions Indimition in Instrive and Indiontion和Gornder Worldide的新伙伴关系,通过揭示了全球人群的疾病风险的影响,从而改善全球健康。最近由医学研究委员会批准了一个约250万英镑(250万卢比)的全面基金,英国将使用来自亚洲,非洲,北美洲和南美洲大陆的数据集探索关键人口健康问题。这项研究是由研究人员领导的印度CSIR-CERTRE,英国布里斯托尔大学的细胞和分子生物学,MRC部门,伦敦伦敦卫生与热带医学学院的MRC单位。摘要的非传染性疾病(NCD)如糖尿病,心血管疾病,精神障碍,尤其是在印度和其他南亚国家中,精神障碍正在上升。疾病发作和居住在不同全球地区的人们的症状存在巨大差异。这意味着许多全球社区通常在健康研究中代表不足,而遗传和环境多样性对这些社区内健康的重要影响可能会被错过这些社区,这对于印第安人(南亚人)和非洲人尤其如此。CSIR-CCMB的研究提供了印第安人不同遗传结构的持续证据及其对1型糖尿病和2型糖尿病,慢性胰腺炎等常见疾病的影响。此外,它们还显示了环境的作用,尤其是维生素B12,叶酸等的微量营养素。通过表观遗传调节来改变疾病风险,这是一种理解疾病风险和管理的新范式。DNA甲基化(DNAM)是一种表观遗传修饰,可帮助人体应对环境信号,并最终有助于整个系统的健康和疾病状况。个体dnam变异受遗传和环境因素的影响。了解DNAM,遗传学和环境之间的关系对于了解健康和疾病的后果途径至关重要。CSIR-CCMB的J C Bose爵士Giriraj r Chandak博士,该研究的Co-Pi使用多个同类群体工作了二十年,以了解印第安人NCD的遗传基础如何负责临床特殊性以及如何通过针对目标的方法调节风险
表观遗传年龄预测因子是Horvath的表观遗传钟1,这是一个统计预测模型,在353 CpG位点使用DNAM至1个预测年龄。2种训练表观遗传时钟的标准方法涉及几个关键步骤:(i)从具有不同背景的个体3个个体的生物样本中收集生物样本; (ii)提取DNA并进行DNA甲基化分析; (iii)进行数据预处理4个程序,例如缺少数据插补,离群值删除和数据归一化; (iv)采用特征筛选方法5来识别相关的CPG站点,这些位点可预测年龄或与衰老过程相关; (v)将高维6回归模型与弹性净罚款拟合; (vi)在独立的测试数据集上评估模型性能,以验证其7个准确性和鲁棒性。8尽管有完善的构造表观遗传时钟的管道,但其中大多数仅提供点平均预测1,2,5。9
表观遗传研究人员经常将DNA甲基化评估为社会/环境15暴露和疾病之间的介体,但是共同评估许多介体的现代统计方法并未被广泛采用。我们通过不同的模拟和对美国大型国家18个同类群体的DNAM数据进行分析,将七种用于高维中介分析的方法与17个连续结果进行了比较,同时为其实施提供了R包装。在19个考虑的选择中,在模拟中检测活性介体的表现最佳的方法是Song等人的20个贝叶斯稀疏线性混合模型。(2020)和高维中心分析21 Gao等人。(2019);估计全局介体效应的优质方法是Zhou等人的高22维线性中介分析。(2021)和主成分调解分析23(2016年)。我们为表观遗传学研究人员提供指南,以选择实践中最佳方法24,并为未来的方法论发展提供建议。25
DNA,并将标本存储在-80°C下。DNAM分析是在杜克大学Yongmei Liu博士的实验室进行的。Bisulfite的转化。500ng的DNA。数据是在Illumina Infinium甲基化甲基甲基甲虫v1.0上产生的(CAT#WG317-1001,Illumina,Illumina,San Diego,CA,美国)。使用制造商方案将总共4 µL的硫酸硫酸硫酸含量转换为DNA与Illumina Beadchip杂交。样品被变性并放大过夜20-24小时。样品的碎片,沉淀和重悬于过夜孵化之后,然后与史诗般的珠奇普杂交16-24小时。然后洗涤珠奇普,以去除任何未脑的DNA,并用核苷酸标记以将引物扩展到DNA。按照Infinium HD甲基化协议,使用Illumina Iscan系统(Illumina,Illumina,San Diego,CA,USA)对珠奇普进行成像。
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。