DNA 重复域内的 DNA 序列改变莫名其妙地增强了中断重复域的稳定性并延迟了其扩展。在这里,我们提出了合理化这种意外结果的机制。具体而言,我们描述了 DNA 重复域的中断如何通过引入环迁移的能量障碍来限制可用于动态、滑出、重复凸起环的集合空间。我们解释了这种障碍是如何产生的,因为一些可能的环异构体会导致重复域双链部分出现能量昂贵的错配。我们认为,集合空间的减少是导致观察到的重复 DNA 扩展延迟的原因。我们进一步假设,在某些扩展 DNA 中观察到的中断重复的丢失反映了环异构体位置的瞬时占据,这导致双链体茎因能量障碍的“泄漏”而出现错配。我们认为,如果这种低概率事件的寿命允许错配修复系统识别,那么就可以发生重复中断的“修复”;从而合理化了最终扩增的 DNA“产品”中没有出现中断的原因。我们提出的机制途径为被描述为“令人费解”的观察结果提供了合理的解释,同时也对一组具有生物医学重要性的耦合基因型现象提供了深刻的见解,这些现象描绘了 DNA 折纸热力学和表型疾病状态之间的联系。
产品描述人类甲基化和非甲基化的DNA集由两个对照DNA(非甲基化和甲基化)以及一组特定设计的引物,可与EZ DNA甲基化 - 甲基化 - 光点™结合使用,EZ DNA甲基化 - ez DNA甲基化基因甲基化基因甲基化基因,EZ DNA甲基化基因, Zymo研究以评估DNA的亚硫酸含量转化的效率。从包含DNA甲基转移酶DNMT1( - / - )和DNMT3B( - / - )1的细胞中纯化了人类HCT116 DKO非甲基化DNA。源自HCT116 DKO细胞的DNA具有低水平的DNA甲基化,可用作DNA甲基化分析的对照(图1)。人类HCT116 DKO甲基化的DNA被纯化为HCT116 DKO DNA,并且已在所有胞质位置进行了酶甲基化,该位置包括M.SSSI甲基转移酶2的CG二核苷酸,并可以用作DNA甲基化分析的阳性对照。在亚硫酸盐处理后,甲基化的胞嘧啶仍未转化(在哺乳动物中,胞嘧啶甲基化主要发生在CPG的情况下),而PCR后,非甲基化的胞嘧啶被转化为尿嘧啶并被检测为胸骨。DAPK1控制引物扩增了与死亡相关蛋白激酶1(DAPK1)基因的甲基化,非甲基化和混合甲基化拷贝,并用于在甲硫酸盐转化对照DNA后用于使用。恢复的DNA非常适合许多应用,包括下游分析,例如PCR,限制性核酸内切酶消化,测序等。
摘要。本文继续对真核基因组和原核基因组中长单链DNA序列的随机(概率)组织的矩阵tensor研究的矩阵tensor研究。作者揭示了每个基因组DNA的n文本表示中N型概率的相应矩阵在数值上以这种代数形式相互关联,该代数形式具有与已知的张量张量 - 数字天线阵列理论的形式主义的类比。这些阵列将许多单独的天线结合到单个协调的合奏中,并具有独特的新兴特性,因此天线阵列被广泛用于医学,天体物理学,航空电子学等。著名的类比允许提出作者的假设,即基因组DNA的随机组织与生物 - 安特纳纳阵列有关。从这个假设的角度来看,在与基因组DNA的单个分组中收集了许多有关使用天线阵列原理的已知事实。关于天线阵列有利可图的特性生物学含义的这个新主题包括生物进化的问题,遗传密码的起源,再生医学和代数生物学的发展。这些问题与作者对基因组DNA随机特征的量子信息分析的结果共同讨论。关键字:基因组DNA,概率,矩阵,张量产物,HADAMARD产品,天线阵列,光子晶体,液晶,生物素器,量子信息学
过去十年见证了核酸治疗和诊断(治疗诊断学)的蓬勃发展。与传统的小分子药物或蛋白质生物制剂不同,核酸治疗诊断学具有以下特征:作为“信息药物”,它具有编码和执行遗传和治疗诊断信息的内在能力、易于进行核酸工程编程、内在刺激或调节免疫调节、多功能功能以及在热变性或化学变性后易于构象恢复。单链环状 DNA (circDNA) 是一类具有共价闭合拓扑结构的单链 DNA (ssDNA)。除了核酸基材料的基本优势(例如低成本、生物相容性和化学修饰简单性)外,circDNA 中没有末端可防止核酸外切酶降解,从而相对于相应的线性 ssDNA 具有增强的生物稳定性。circDNA 已被用于多种治疗诊断应用。例如,circDNA 已被广泛研究作为生物分析信号扩增的模板和通过滚环扩增 (RCA) 和滚环转录 (RCT) 技术合成纳米/微米/宏观生物材料。circDNA 也被常用作多功能 DNA 折纸自组装的支架。最后,circDNA 已被用作治疗诊断适体、miRNA 抑制剂以及成簇的规律间隔的短回文重复序列 - CRISPR 相关蛋白 (CRISPR-Cas) 基因编辑供体。在这篇综述文章中,我们将讨论 circDNA(不包括双链环状 DNA,如质粒)的化学性质、特性和治疗诊断应用;我们还将展望该研究领域的挑战和机遇。
CRISPR 基因编辑提供了前所未有的基因组和转录组控制,可精确调节细胞功能和表型。然而,将必要的 CRISPR 成分递送至治疗相关的细胞类型且不产生细胞毒性或意外副作用仍然具有挑战性。病毒载体存在基因组整合和免疫原性的风险,而非病毒递送系统难以适应不同的 CRISPR 载体,而且许多系统具有高度的细胞毒性。精氨酸-丙氨酸-亮氨酸-丙氨酸 (RALA) 细胞穿透肽是一种两亲性肽,它通过与带负电荷的分子的静电相互作用自组装成纳米颗粒,然后将它们递送到细胞膜上。与其他非病毒方法相比,该系统已用于将 DNA、RNA 和小阴离子分子递送至原代细胞,且细胞毒性较低。鉴于 RALA 的低细胞毒性、多功能性和有竞争力的转染率,我们旨在将这种肽建立为一种新的 CRISPR 递送系统,适用于各种分子格式,适用于不同的编辑模式。我们报告称,RALA 能够有效地封装 DNA、RNA 和核糖核酸蛋白 (RNP) 格式的 CRISPR 并将其递送至原代间充质干细胞 (MSC)。RALA 与市售试剂之间的比较表明,其细胞活力更佳,可导致更多的转染细胞并维持细胞增殖能力。然后,我们使用 RALA 肽将报告基因敲入和敲除到 MSC 基因组中,以及转录激活治疗相关基因。总之,我们将 RALA 确立为一种强大的工具,可以更安全有效地以多种货物格式递送 CRISPR 机制,用于广泛的基因编辑策略。
质粒是一种自主复制的染色体外环状 DNA 分子,不同于正常的染色体 DNA,在非选择性条件下对细胞存活并非必需。细菌质粒是双链 DNA 的闭合环状分子,大小从 1 到 >200 kb 不等。它们存在于多种细菌物种中,在这些细菌物种中,它们表现为独立于细菌染色体遗传和复制的额外遗传单位。质粒通常含有编码酶的基因,这些酶在某些情况下对宿主细胞有利。编码的酶可能与抗生素耐药性、对环境中的毒素(例如复杂的有机化合物)的耐药性或细菌自身产生的毒素有关。质粒一词最早由美国分子生物学家 Joshua Lederberg 于 1952 年提出。同年,J. Lederberg 回顾了细胞遗传方面的文献,并建议将所有染色体外的遗传决定因素称为“质粒”。与细菌染色体相比,质粒的尺寸非常小,较老的质粒仅为大肠杆菌染色体尺寸的 0.8%,尽管存在其他比这个尺寸小的质粒,但 Pl. DNA 和 Ch. DNA 非常相似,环状结构为一个二进制字符串,但在细胞内,与染色体不同,质粒牢固地缠绕在自身周围,形成所谓的超卷曲质粒或共价闭合环状 (CCC)。如果已知质粒的表型标记(例如抗生素抗性),建议在选择压力下培养细胞以避免质粒丢失。
摘要 我们报告了二氨基类固醇 irehdiamine A 与 DNA 复合物的平衡、松弛动力学和瞬态电二色性研究。结果与复合物在饱和状态下的 j# 扭结结构一致,每隔一个碱基对结合的类固醇会导致 DNA 结构扭结。支持这一假设的结果包括,当只有少量药物结合时,棒状细菌 DNA 分子的表观长度会减少,然后在饱和状态下表观长度会增加。极限二色性幅度意味着碱基相对于取向轴的倾斜度大幅增加;在饱和状态下,碱基 UV 跃迁矩与垂直于取向轴的平面倾斜约 310°。由于 260 纳米跃迁矩的偏振方向,结果表明碱基的倾斜度必须主要在碱基对的短轴而不是长轴上。复合物的显著增色与碱基堆积作用的丧失相一致,这是扭结结构所要求的。动力学结果暗示了一种双分子反应机理,其结合速率常数与温度有关,约为 108 M-' sec-1,解离速率常数约为 5 X 103 sec1I,几乎与温度无关。结合活化能和表观反应焓从 12 到 22 kcal mol-' 不等;正如碱基堆积作用丧失所预期的那样,复合物形成时会吸收热量。实验的一个异常结果是,两种真核 DNA 表现出更大的表观长度增加 (13%),而三种原核 DNA 的长度增加仅为 6%。复合物的动力学性质也存在差异。
CRISPR-Cas9 系统彻底改变了基因组编辑。CRISPR-Cas9 由单分子向导 RNA (sgRNA) 和蛋白质 Cas9 核酸酶组成,后者可识别特定靶序列和原型间隔区相邻基序 (PAM) 序列,然后切割目标 DNA 序列。该 CRISPR-Cas9 系统已被用作有效的负选择工具,用于在位点特异性诱变过程中切割未编辑或未改变的靶 DNA,从而获得具有所需突变的微生物细胞。本研究旨在调查 CRISPR-Cas9 系统在细菌体内寡核苷酸定向诱变中的基因组编辑效率。该系统成功地在大肠杆菌的 galK 中引入了 2 到 4 个碱基的突变,编辑效率很高 (81% − 86%)。然而,单点突变(T504A 或 C578A)很少引入,并且编辑效率非常低(<3%),这可能是由于错配耐受性所致。为了解决这个问题,我们在 sgRNA 序列中设计了一个或两个碱基的错配,以识别大肠杆菌中 galK 的靶序列。使用单碱基错配的 sgRNA,在 36%−95% 的负向选择的大肠杆菌细胞中成功引入了单点核苷酸突变(galK 基因中的 T504A 或 C578A)。通过使用错配的 sgRNA 的全基因组单碱基编辑实验,随机选择了 16 个靶标。因此,在 48 个所需的单碱基突变中,使用错配的 sgRNA 成功编辑了 25 个单碱基。最后,为微生物基因组中的单核苷酸编辑提供了适用的靶标错配 sgRNA 设计规则。
基因表达的抽象调节是细胞生物学的重要组成部分。转录因子蛋白经常结合旋转启动位点上游的调节DNA序列,以促进RNA聚合酶的激活或抑制。研究实验室已经专门用于了解转录因子的转录调节网络,因为这些受调节的基因为宿主生物的生物学提供了重要的见解。各种体内和体外测定已被开发,以阐明转录调节网络。包括SELEX-SEQ和CHIP-SEQ在内的几种测定法捕获了结合DNA结合的转录因子,以确定首选的DNA结合序列,然后可以将其映射到宿主有机体的基因组以鉴定候选调节基因。在此方案中,我们描述了一种使用限制性核酸内切酶,保护,选择和放大式(REPSA)来确定兴趣转换因子的DNA结合序列的替代性迭代选择方法。与基于传统抗体的捕获方法相反,REPSA通过用IIS型限制性核酸内切酶来挑战结合反应来选择转录因子结合的DNA序列。耐裂解的DNA物种通过PCR扩增,然后用作下一轮REPSA的输入。重复此过程,直到通过凝胶电泳观察到受保护的DNA物种,这表明成功的REPSA实验。随后的REPSA选择的DNA的高通量测序以及伴随基序发现的epsa选择的DNA,可以使用扫描分析来确定转录因子共识结合序列和潜在的调节基因,并在确定生物体的转录调节网络方面提供了关键的第一个步骤。
真核生物基因组中经常散布着大量串联重复序列,称为卫星 DNA,这些序列是组成性异染色质的基础,常位于着丝粒区域周围。虽然某些卫星 DNA 类型在着丝粒生物学中具有明确的作用,但其他丰富的卫星 DNA 的功能尚不明确。例如,人类卫星 3 (HSat3) 约占人类基因组的 2%,形成高达数十兆碱基的巨大阵列,但这些阵列在着丝粒功能中没有已知的作用,直到最近才几乎完全被排除在基因组组装之外。因此,这些巨大的基因组区域仍然相对研究不足,而 HSat3 的潜在功能作用在很大程度上仍然未知。为了解决这个问题,我们对新的 HSat3 结合因子进行了系统筛选。我们的工作表明,HSat3 阵列含有高密度的转录因子 (TF) 基序,这些基序与与多个高度保守的信号通路相关的因子结合。出乎意料的是,HSat3 中最富集的 TF 属于 Hippo 通路转录效应子家族 TEAD。我们发现 TEAD 以细胞状态特异性的方式将辅激活因子 YAP 募集到 HSat3 区域。利用 RNA 聚合酶-I 报告基因检测、HSat3 的靶向抑制、YAP 的诱导降解和超分辨率显微镜,我们表明 HSat3 阵列可以将 YAP/TEAD 定位在核仁内,YAP 在那里调节 RNA 聚合酶-I 活性。除了揭示 Hippo 通路与核糖体 DNA 调控之间的直接关系外,这项研究还表明卫星 DNA 可以编码多个转录因子结合基序,为这些巨大的基因组元素定义了新的作用。
