摘要:由于其复杂性,CRISPR/Cas 系统已成为广泛使用的酵母基因组编辑方法。然而,CRISPR 方法通常依赖于预组装的 DNA 和额外的克隆步骤来传递 gRNA、Cas 蛋白和供体 DNA。这些繁琐的步骤可能会阻碍其实用性。在这里,我们提出了一种替代方法,即组装和 CRISPR 靶向体内编辑 (ACtivE),该方法仅依赖于线性 DNA 片段的体内组装来构建质粒和供体 DNA。因此,根据用户的需要,可以从存储库中轻松选择和组合这些部分,作为快速基因组编辑的工具包,无需任何昂贵的试剂。该工具包包含经过验证的线性 DNA 片段,易于在室温下存储、共享和运输,大大降低了昂贵的运输成本和组装时间。优化该技术后,还对酵母基因组中靠近自主复制序列 (ARS) 的八个基因座进行了整合和基因表达效率表征,以及这些区域的破坏对细胞适应性的影响。通过构建 β-胡萝卜素途径展示了 ACtivE 的灵活性和多路复用能力。在短短几天内,在酿酒酵母 BY4741 上从头开始实现了单基因整合效率 >80% 和三重整合效率 >50%,无需使用体外 DNA 组装方法、限制性酶或额外的克隆步骤。本研究提出了一种可轻松用于加速酵母基因组工程的标准化方法,并为酵母合成生物学和代谢工程目的提供了明确的基因组位置替代方案。关键词:酿酒酵母、CRISPR 工具包、基因组编辑、合成生物学、标准化、基因座表征■简介
图 1. CRISPR-Cas9 RNP 促进 C. higginsianum 中与供体 DNA 的同源重组。(a)CRISPR-Cas9 RNP 介导的 HDR 示意图。首先,将重组 Cas9 蛋白(橙色)和针对目的基因 (GOI) 的合成 gRNA(洋红色)在体外混合以形成 RNP。其次,用 RNP 和供体 DNA 转化 C. higginsianum 原生质体,其中供体 DNA 具有选择标记 NPTII,两侧是两个同源臂。最后,通过结合选择培养基和基于 PCR 的筛选来分离用选择盒替换 GOI 的菌株。(b)URA3 敲除的构建设计。供体 DNA 具有选择标记,即 NPTII 表达盒,两侧是 0.5 kb 的同源臂,以浅灰色框表示。箭头表示扩增 ura3 基因组中特异性存在的“片段 1”和“片段 2”的引物。(c)转化子数量和 URA3 敲除率。左图显示每板转化子数量,右图显示每板 URA3 敲除率(n =5)。“-gRNA”和“+gRNA”分别代表不含和含 gRNA 的结果。星号表示统计差异(p < 0.001,Welch t 检验)。通过 PCR 筛选评估 URA3 的敲除,如 (d) 所示。(d)ura3 突变体的 PCR 筛选。使用 (b) 中所示的引物组,在含有 500 µg/ml G418 的 MA 上使用每个菌落进行 PCR。显示了从 -gRNA 和 +gRNA 转化子中随机选择的七个菌落的结果。 C. higginsianum 肌动蛋白基因 (CH63R_04240) 的 238 bp 片段被指定为肌动蛋白。凝胶左侧的数字表示 DNA 大小标记 (bp) 的位置。
Neoformans是真菌性脑膜炎的最常见原因,是一种基础性菌群单倍体发芽的酵母,具有完整的性周期。通过生物学转化和长长的同源臂,通过同源重组进行基因组修饰是可行的,但是该方法是艰巨而不可靠的。最近,多个小组报道了使用CRISPR-CAS9作为生物学的替代方案,但仍然有必要使用长期的HOMOLOG ARM,从而限制了该方法的实用性。由于在先前研究中使用的链球菌CAS9衍生物在Neoformans中没有选择用于表达,因此我们设计,合成并测试了全梭状芽胞杆菌(C. neoformans)的全念珠菌(CNO)Cas9。我们发现,CAS9仅带有常见的Neoformans密码子和共有的C. Neoformans内含子以及TEF1启动子和终结器以及核定位信号(CNO Cas9或“ CNOCAS9”)可靠地可靠地在C. Neoformans菌株中可靠地编辑基因组。此外,使用带有短(50bp)同源臂的供体来完成编辑,这些捐赠者附着于标记DNA上,这些供体与合成的寡核苷酸和PCR扩增一起产生。我们还证明,先前的CNOCAS9稳定整合进一步增强了转移和同源重组效率。重要的是,这种操作不会影响动物的毒力。我们还建立了一个通用标记的模块,该模块具有密码子优化的荧光蛋白(Mneongreen)和一个串联的钙调蛋白结合肽-2X标志标签,允许对蛋白质进行本地化和纯化研究,以对相应的基因进行简短授权的重新构造对相应的基因进行修改。这些工具使Neoformans中的短体系基因组工程能够。
•背景和目标卫星DNA(SATDNA)是由串联布置的重复序列组成的,通常是高度均质的单元,称为单体。尽管SATDNA通常是快速发展的,但是一些Satdna家族可以在数百万年的分离的物种中保守,这可能是因为它们在基因组中具有弹性作用。Tyba是对全心中心有机体描述的第一个Centromere特异性SATDNA,直到现在仅以八种Rhynchospora Vahl属的特征。(cyperaceae)。在这里,我们对tyba进行了对属的广泛采样,分析和比较其进化模式与其他SATDNA。•方法我们表征了SatDNA在70种的杂交目标捕获测序(HYB-SEQ)基于稳健的DADNAS跨系统发育中的结构和序列演变。我们开采了Tyba的重复分数 - 例如卫星将其特征与其他SATDNA进行比较,并为该属构建了基于Tyba的系统发育。•关键结果我们的结果表明,tyba存在于该属的大多数物种中,跨越了五个主要进化枝中的四个,并在31 MYR上保持了70.9%的内部成对身份。相比之下,其他卫星家族具有较高的肠内成对身份,但受到系统发育的限制。此外,Tyba序列可以分为12个变体,分为三个不同的特定于特定的亚家族,显示了SATDNA进化的传统模型的证据,例如协调的进化和库模型。此外,基于TYBA的系统发育与HYB-SEQ拓扑表现出很高的一致性。我们的结果显示了Tyba与核小体可能存在的结构指示,因为与其他非丝粒卫星相比,其高曲率峰在保守区域上是高度的曲率峰值,并且总体高弯曲性值。•总体而言,TYBA在整个Rhynchospora属中表现出显着的序列保守和系统发育意义,这表明功能作用可能导致基因组中SATDNA的长期稳定性和保守性。
描述:该合作研究验证了一种用于检测番茄内源性参考基因 LAT52 的定性和定量 PCR 方法。每位参与者收到 12 个番茄基因组 DNA 样本,编号为 U1-U12,提取自具有不同地理和系统起源的番茄品种;10 个其他植物基因组 DNA,编号为 W1-W10,这些基因组 DNA 要么与番茄进化相关,要么是常用的植物材料;10 个 DNA 样本,编号为 S1-S10,是五个浓度水平的双盲重复,即番茄样品以 2%、0.5%、0.1%、0.05% 和 0.01% (w/w) 的比例与非转基因玉米粉混合而成;4 个纯化的番茄品种基因组 DNA 样本,编号为 AD;8 个盲 DNA 样本,编号为 X1-X8,包含四个番茄品种基因组 DNA 的两个浓度水平(0.5 和 0.05 ng/uL)。此外,参与者还收到一个由加分1号番茄DNA溶液组成的阳性DNA靶标对照和一个由鲑鱼精子DNA溶液组成的阴性DNA对照。此外,实验室还配备了定性PCR反应主混合物、定量PCR反应主混合物和DNA稀释溶液。使用编码为W1-W10的十种不同的DNA植物溶液验证了番茄LAT52基因的物种特异性。使用编码为U1-U12的12种不同番茄品种测试了番茄LAT52基因的等位基因变异。为了评估不同品种之间拷贝数的稳定性,参与者被要求使用来自编码为AD的四个番茄品种的基因组DNA稀释系列构建四个单独的标准曲线。为了评估LAT52定性PCR方法是否具有足够的灵敏度,实验室以连续稀释的浓度测试了编码为S1-S10的10个DNA样本。为了验证 LAT52 的定量 PCR 方法,每个实验室都使用了四个不同番茄品种(中薯 5、R144、早丰和林春)(分别编号为 A、B、C 和 D)的基因组 DNA,并将它们连续稀释至 50、5、0.5、0.05 和 0.01 ng 进行 PCR 反应,以构建四条标准曲线。然后使用 LAT52 实时 PCR 检测对这四个品种(编号为 X1-X8)的八个盲番茄样品进行定量。验证指标和描述性统计数据是根据每个级别进行三次重复的三次测试的数据计算得出的。
摘要 - 基因组分析是对基因的研究,其中包括对基因组特征的识别,测量或比较。基因组学研究对我们的社会至关重要,因为它可以用于检测疾病,创建疫苗和开发药物和治疗方法。作为具有大量并行处理能力的一种通用加速器,GPU最近用于基因组学分析。开发基于GPU的硬件和软件框架用于基因组分析正在成为一个有希望的研究领域。为了支持这种类型的研究,需要基准,以具有代表性,并发和多种应用程序的应用程序。在这项工作中,我们创建了一个名为Genomics-GPU的基准套件,其中包含10种广泛使用的基因组分析应用。它涵盖了DNA和RNA的基因组比较,匹配和聚类。我们还调整了这些应用程序来利用CUDA动态并行性(CDP),这是一个支持动态GPU编程的最新高级功能,以进一步提高性能。我们的基准套件可以作为算法优化的基础,也可以促进GPU架构开发进行基因组学分析。索引术语 - 基因组学,生物信息学,基准测试,GPU,加速计算,基因组分析,计算机体系结构。I。研究基因组序列分析是指组织ISM的DNA序列的研究。该程序具有许多重要的应用,例如大流行爆发追踪,早期癌症检测[79],药物发育[43]和遗传疾病鉴定[87]。要通过通过四个字母(A,C,T和G)(也称为碱基或核苷酸)的字符串的形式将DNA分子通过分析生物体的基因组构成分析。确定碱基序列的过程称为基因组测序[30]。比较和发现生物学序列之间差异的过程称为序列比对[67]。过去十年中,基因组数据库的指数增长,需要在计算工具的帮助下进行大量数据。结果,已经开发了几种用于基因组分析的工具,例如BLAST [57]和GATK [58]。为了提高性能,某些基因组测序框架(例如Parasail [31]和KSW2 [53])采用了具有SIMD能力的CPU。他们利用SIMD指令提供的并行性来执行矩阵计算,通过在多个操作数中运行同一矢量命令。FPGASW [39]使用FPGA中的大量执行单元创建线性收缩期
目的:通过参考材料(RM)8366传递的值旨在将人类表皮生长因子基因(EGFR)和人类MET原始癌基因,受体酪氨酸激酶基因(MET)与未扩增的参考基因的比率进行协调。注意:有关可识别私人信息的“使用和隐私协议”,请参见第2页。eGFR基因扩增和相关的蛋白质表达增加并与许多人类恶性肿瘤的发病机理有关。在几种类型的癌症中,EGFR基因的扩增(增加)和蛋白质过表达被用作确定治疗治疗的生物标志物,并预测响应抗EGFR靶向治疗的临床结果[1]。MET基因扩增,导致蛋白质表达增加和MET受体的组成性激活。进行了各种临床试验,以评估癌症患者选择性MET抑制剂的安全性和功效。但是,对MET水平的准确评估仍然是一个挑战[2]。rm 8366由从六个人类癌细胞系中提取的基因组DNA组成,这些人类癌细胞系具有不同量的EGFR和MET基因。六个纯化的基因组DNA在缓冲液中,由10 mmol/L 2-Amino-2-(羟甲基)丙烷-1,3-二醇(TRIS)和0.1 mmol/L乙二胺二苯甲酸乙酸乙酸disodium disodium sal(EDTA)pH 8.0(TE -4)(TE -4)。描述:RM的一个单位由每个组件的一个小瓶组成,其中包含大约100μl的DNA溶液。六个成分是源自人类细胞系A-431,BT-20,C32,Daoy,HS 746T和SNU-5的基因组DNA材料,分别标记为A,B,C,C,D,E和F。在准备稀释液时,请考虑单个组件中的EGFR和MET放大的水平,以确保EGFR和MET拷贝数在您使用的测定的工作范围内。这些小瓶中的每一个都被标记,并用颜色编码的螺钉盖密封。未认证的值:未认证的值适合用于方法开发,方法协调和过程控制,但不为国际单位系统(SI)或其他高阶参考系统提供计量学可追溯性[3]。在表1和2中显示了95%可靠间隔和95%预测间隔的EGFR和MET副本比例的非认证值。附加信息:EGFR,MET和每个微层的基因副本的潜在兴趣值;附录A中提供了其他信息。有效期:未认证的值在指定的测量不确定性中有效,直到2027年12月31日。如果材料存储或使用不当,损坏,污染或其他修改,则值分配将无效。维护未认证的值:NIST将监视此材料的有效期结束。如果发生了实质性的技术变化,影响了此期间未认证的值,NIST将更新此参考材料信息表并通知注册用户。注册将有助于通知。RM用户可以从NIST SRM网站上可用的链接在线注册,也可以填写用RM提供的用户注册表格。在使用该材料交付的任何值之前,用户应验证其具有此文档的最新版本,可通过NIST SRM网站(https://www.nist.gov/srm)获得。
