蛋白质的来源:一种重组大肠杆菌菌株,携带来自嗜热有机体Thermus aquaticus YT-1的TAQ DNA聚合酶基因。单位定义:1个单位定义为将在75°C的30分钟内将10 nmol的DNTP纳入酸 - 不溶性材料的酶。分子量:93,910 Daltons质量控制分析:使用2倍连续稀释方法测量单位活动。在1X反应缓冲液中制成酶的稀释液,并将其添加到含有小腿胸腺DNA,25 mM TAPS(pH 9.3),50 mM KCl,2.0mm MGCL2,1 mM DTT,3H-DTTP和100 µm DNTP的50 µL反应中。 在75°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(Molecular Cloning,V3,2001,pp。 A8.25-A8.26)。 蛋白浓度(OD 280)由OD 280吸光度确定。 通过浓缩和稀释酶溶液的SDS-PAGE评估物理纯度,然后进行银色染色检测。 通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。 单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。 双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。 双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。在1X反应缓冲液中制成酶的稀释液,并将其添加到含有小腿胸腺DNA,25 mM TAPS(pH 9.3),50 mM KCl,2.0mm MGCL2,1 mM DTT,3H-DTTP和100 µm DNTP的50 µL反应中。在75°C下孵育10分钟,浸入冰上,并使用Sambrook和Russell的方法进行分析(Molecular Cloning,V3,2001,pp。A8.25-A8.26)。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。
nzytaq II 2×无色主混合物是一种预混合的现成溶液,其中含有NZytaq II DNA聚合酶(MB354),属于新一代TAQ衍生的DNA聚合酶,优化了用于标准PCR应用的DNA聚合酶。主混合物含有最佳浓度的DNTP,反应缓冲液和添加剂,并支持最高6 kb的广泛的DNA模板的可靠和可靠放大。MGCL 2最终浓度为2.5 mm,允许实施各种PCR协议。对于高度敏感的下游应用,建议在随后的协议中使用前使用nzygelpure(MB011)净化放大的PCR产物。Nzytaq II DNA聚合酶缺乏3'→5'外切核酸酶活性。由此产生的PCR产品具有A-悬垂性,适用于NZYTECH的NZY-A PCR克隆试剂盒(MB053)或NZY-A-A快速PCR克隆试剂盒(MB137)。
特性 ALzyme-HSTaq 是一种重组耐热酶,在 dNTP 和引物存在下可催化 5'→3' 单链基质 DNA 合成。它具有 5'→3' 外切酶活性,但没有校正活性。ALzyme-HSTaq 可有效扩增长达 5 bp 的 DNA 片段。特定突变使该酶对血液、土壤、植物组织等中所含的某些抑制剂具有抗性。此外,ALzyme-HSTaq 具有脱氧核苷酸转移酶活性,因此相当一部分扩增的 DNA 分子在 3' 端带有突出的脱氧腺苷 (dA) 残基。热启动技术。该酶在 PCR 混合物混合条件下无活性,在初始变性步骤后被激活。ALzyme-HSTaq 浓度为 5 单位/µl。 100 微升酶(ZHSTaq-100)含有 500 单位,500 微升(ZHSTaq-500)含有 2500 单位。ALzyme-HSTaq-B 反应缓冲液为 ALzyme-HSTaq DNA 聚合酶提供最佳条件。
Reagent/Material Vendor Stock Number Molecular grade H20 Sigma-Aldrich W4502 * GoTaq® G2 Colorless Master Mix Promega M7833 DNeasy® Tissue Kit Qiagen 69506 Agarose Sigma-Aldrich A9414 1kb+ DNA ladder Life Technologies 10787-018 SYBR SAFE DNA stain Life Technologies S33102 100% ETOH Gold Shield Chemicals DSP-CA-151 *GOTAQ®G2无色主混合混合物是一种预混合的现成溶液,其中含有GOTAQ®G2DNA聚合酶,DNTP,MGCL2和反应缓冲液,可在最佳浓度下以PCR有效地放大DNA模板。GOTAQ®G2DNA聚合酶表现出5´→3´外切核酸酶活性。gotaq®G2无色主混合物,2x:GoTaq®G2DNA聚合酶在2x无色GOTAQ®G2反应缓冲液(pH 8.5),400μMDATP,400μMDGTP,400μMDCTP,400μMDCTP,400μMDTTP和3MM DTTP和3MM MGCL2中提供。
图 12. Sanger 法。A) 双脱氧核苷酸 (ddNTP) 的结构与脱氧核苷酸 (dNTP) 相似,只是缺少 3'OH 基团。B) 当荧光标记的 ddNTP 被掺入 DNA 链时,合成会停止。在包含不同 ddNTP 的反应中,DNA 片段合成可以在不同点终止。然后根据大小分离合成产物,并使用荧光标记来确定序列中添加核苷酸的顺序。基因组很大 - 通常有数百万个碱基对 - 因此无法在一个步骤中端到端测序。要对基因组进行测序,必须首先将其 DNA 分解成较小的片段,并对每个片段进行单独测序。特定 DNA 片段的既定碱基顺序称为“序列读取”。然后利用计算工具组装各种片段并推断出起始基因组的序列。这个过程在历史上被称为“散弹枪测序”。人类基因组计划 (HGP) 是全基因组 DNA 测序的首次重大尝试,由美国国立卫生研究院牵头。HGP 于 2003 年完成,利用桑格测序法对来自多个个体的 DNA 的基因组克隆进行测序,以生成人类基因组的代表性序列。
最近,设计了采用Staudinger连接进行DNA结合的方法。表明,通过合适的接头系统将叠氮化物功能结合可以使染料与单链DNA的5 9端结合。22 Rajski等。使用Staudinger连接将DNA与随后的Cu(i)诱导的链分裂结合DNA。23在这里,我们报告了一种新型叠氮化物修饰的三磷酸核苷的构建块的开发,该块很容易通过DNA聚合酶将DNA掺入DNA中。可以通过Staudinger连接将所得的双链叠氮化物修饰的DNA与改良的磷酸化。在方案1B中描述了通过使用DNA聚合酶进行随后的Staudinger连接的DNA聚合酶对DNA位点特异性的策略。第一步由DNA聚合酶反应组成,其中一种天然的三磷酸核苷(DNTP)被包含叠氮化物功能的修饰类似物取代。显然,此步骤的成功取决于DNA聚合酶接受改性核苷酸的能力。叠氮化物修饰的双链DNA反过来应用作具有适当功能化磷酸的Staudinger连接的底物。
化学免疫疗法在B细胞淋巴瘤患者中的生存率提高了,但是难治性/复发性疾病仍然是一个重大挑战,敦促开发新的治疗剂。karonudib(Th1579)的开发是为了抑制MTH1,这是一种可预防DNA中氧化DNTP掺入的酶。mTH1在肿瘤活检中高度上调,来自弥漫性大B细胞淋巴瘤(DLBCL)和伯基特淋巴瘤的患者,因此确认了针对MTH1的基本原理。在这里,我们在体外和临床前B细胞淋巴瘤模型中测试了Karonudib的功效。使用一系列B细胞淋巴瘤细胞系,Karonudib强烈降低了激活的正常B细胞可耐受的浓度的生存力。在B细胞淋巴瘤细胞中,Karonudib增加了8氧化型DGTP的掺入DNA中,并因纺锤体组装失败而引起的前期停滞和凋亡诱导。MTH1基因敲除细胞系对Karonudib诱导的细胞凋亡的敏感性不太敏感,但显示出与野生型细胞相似的细胞周期停滞表型,表明该药物的双重抑制作用。karonudib在两种不同的异种淋巴瘤模型中作为单一药物高度有效,包括ABC DLBCL患者衍生的异种移植物,导致长期存活和完全控制的肿瘤生长。一起,我们的临床前发现为B细胞淋巴瘤中Karonudib的进一步临床测试提供了基本原理。
sars-cov-2 - 导致共同研究大流行病的病毒对人类健康的影响比其他呼吸道病毒更大,尽管其机制尚未完全理解。在最近的论文中,由Fabrizio d'Adda di Fagagna教授协调的研究人员首先证明SARS-COV-2会造成DNA损伤,并引起细胞中DNA损伤的改变。从机械上讲,研究人员发现SARS-COV-2表达能够劫持细胞核苷酸代谢的蛋白质。具体而言,已经发现病毒因子ORF6和NSP13分别通过蛋白酶体和自噬促进了DNA损伤响应检查点激酶1(CHK1)的降解。CHK1损失导致脱氧核苷酸三磷酸(DNTP)短缺,导致S期进展受损,DNA损伤,促炎性途径激活和细胞衰老。此外,研究小组证明,由于修复机制的损害,DNA断裂会累积。的确,作者证明了SARS-COV-2核素蛋白会损害结合蛋白53BP1的募集,并通过与53BP1竞争与损伤诱导的长期非编码RNA相关的DNA修复。值得注意的是,在体外细胞模型中首先获得的数据也被确认在SARS-COV-2感染的小鼠和COVID-19患者中的体内。总的来说,获得的发现表明SARS-COV-2既诱导DNA损伤并损害其修复,最终导致细胞衰老并扩散炎症。
对于CRISPR/CAS工作流程,核酸酶和相应GRNA的选择直接影响基因组编辑后的indel频率的计算。当前用于评估编辑效率的当前METH OD使用来自转染的细胞的合并GDNA的PCR扩增,然后是基于测序或基于测序的基于测序或基于不匹配的裂解的分析分析的变性和重新启动的indneal indneal indneal DNA(4)。为加快编辑效率的确定并避免昂贵的NG测序,“通过分解来跟踪Indels”(Tide)(5)和“ CRISPR编辑的推断”(ICE)方法(6)是开发用于使用sanger sequenc dna sequenceenc dna dna dna dna dna dna dna dna dna dna dna dna dna dna(ice)方法(ICE)方法(ICE)方法(ICE)。但是,要使这些方法可靠,分析的PCR产品必须具有高质量(例如,单个频带,没有底漆和DNTP)。在本文中,我们证明了通过Exo-CIP快速PCR清洁套件方法清理的扩增子质量匹配,该方法是通过使用ICE软件工具进行批处理分析的传统基于旋转柱的套件来实现的,从而启用了更快,更高的推出方法,以制备旋转后的样品,用于旋转后的样品。
焦磷酸测序:Roche模板由EMPCR 1制备,其中1-20万珠沉积在PTP井中。较小的珠,带有连接的硫酸酶和荧光素酶围绕模板珠。单个DNTP依次流过井,以预定的顺序分配。在掺入补体DNTP时,释放的PP I被转换为ATP,从荧光素蛋白到羟基二耐蛋白的氧化产生光。读取平均400个基础作为流程图。对于均聚物,重复多达六个核苷酸,添加的DNTP的数量与光信号成正比。插入是最常见的错误类型,其次是删除。通过连接测序:将约1亿个EMPCR的模板珠沉积在载玻片上。在退火时,添加了1,2个探针的库。适当的条件使选择性杂交和探针结扎到互补位置。1,2探针的第一个(y)和第二(z)位置被设计为审讯库,因此16个二核苷酸由四种染料编码。在四色成像之后,将带状的1,2探针化学裂解以产生5'-PO 4组(P)。杂交,连接,成像和裂解的循环又重复了六次。然后从模板中剥离扩展引物,并使用N – 1底漆进行第二个连接弹,该底漆将询问底座重置为左侧的一个位置。询问每个基础两倍,提高了颜色调用的准确性。随后发生了七个连接周期,然后再进行三个结扎弹。然后将35个数据位组成的字符串在色彩空间中编码,然后对准参考基因组以解码DNA序列。替换是最常见的错误类型。可逆终结器:DNA片段的Illumina Bridge放大是在载玻片的八个通道上随机分布的,高密度向前和反向引物共价附加到其上。固相扩增可从单个ssDNA模板产生约8000万个MC。将底漆退火到每个MC中模板的自由末端。聚合酶延伸,然后终止从四个RTs组中的DNA合成,每组用不同的染料标记。未合并的RT被洗净,通过四颜色成像进行基础识别,并通过化学裂解去除阻塞和染料组以允许下一个周期。给定MC的颜色图像提供了〜45个基础的读取。替换是最常见的错误类型。使用RTS进行单分子测序:Helicos数十亿个未夸大的ssDNA模板是用poly(da)尾巴制备的,这些尾巴与聚(DT)引物杂交,共同连接到载玻片上。对于一通测序,该引物 - 模板复合物就足够了。两通序测序涉及复制模板链,删除原始模板,并退火向表面(未显示)。与Illumina的RT不同,这四个Helicos RT用相同的染料标记,并以预定的顺序单独分配。融合事件导致荧光信号。使用单分子消除了Dephasing的问题,其中给定MC内的数千个复制模板不会有效地扩展其引物。删除是最常见的误差类型,可以通过提供约25个基本共识读取的两次测序可大大降低。的应用和挑战100篇论文描述了这些创新的成果。虽然改进继续,但读取长度限制,错误类型和频率显着影响组装策略。对于简短(<100个基本)读取平台,通过映射到参考基因组来指导组装。结合Sanger和Roche数据(100个基本读数)改善了从头组件2,并且随着焦磷酸测序读取长度的改进,使用混合Roche(250键读数)和Illumina数据进行了改善,已经描述了从头组装。最近使用Roche 4和Illumina平台报告了第一个个性化基因组测序项目。Roche,Illumina和AB平台在1,000个基因组项目中被用于生成人类遗传变异的详细图表以及人类微生物组项目,以将微生物组动态与人类健康相关联。应用不限于测序基因组。共识计数分析5最近出现了,从而实现了转录因子结合,mRNA剪接,DNA甲基化,小RNA,染色质结构和DNase超敏位点的全局分析。配对的测序方案。这些不仅对从头组件很重要,而且对于识别结构变化和映射mRNA剪接同工型。展望未来,太平洋生物科学,多佛系统(Polonator G.007),Visigen Biotechnologies,Lasergen,Inc。,Intelligent Bio-Symys,完整的基因组学和牛津Nanopore技术等公司的平台开发。