研发技术集成电路设计:• 带有 PMU 和 EHU 的 MCU 的开发• 机器学习在 IC 布局中的应用• 印刷、可重构、自修复、无电池、柔性、纸基、生物、生物相容性、液体、瞬态、可食用和表皮电子产品的开发• 关键技术的开发• 为更多摩尔应用开发逻辑核心设备、DRAM、Flash 和 NVM 技术• 新兴存储设备的开发,包括 FeRAM、MRAM、CBRAM、OxRAM、聚合物存储器和基于 DNA 的海量存储设备• 新型逻辑设备的开发,包括 SpinFET、Neg-C FET、Mott FET、NEMS 和拓扑绝缘体• 为超越摩尔 (MtM) 应用开发超越 CMOS 设备,包括 PUF 和 RNG• 新型架构的开发,包括 GAA 设备、3D 堆叠以及 CMOS 与超越 CMOS 的共集成
今天,我以公司副总裁的身份坐在委员会面前,负责美光在美国的扩张,这代表着超过 1000 亿美元的资本支出。美光计划在爱达荷州和纽约州两个州扩大尖端 DRAM 产能,并申请对我们位于弗吉尼亚州的现有工厂进行现代化改造和增加新功能。正如我稍后将更详细地讨论的那样,在国会于 2022 年通过的两党 CHIPS 与科学法案的 60 多亿美元支持下,美光正在进行变革性投资,在纽约州奥农达加县和爱达荷州博伊西建造晶圆厂。我们还提议扩建和现代化我们位于弗吉尼亚州马纳萨斯的现有晶圆厂——我们很高兴您或您的任何员工来参观这个晶圆厂。此申请正在等待 CHIPS 项目办公室的审核。
该设备还使用每个节点中的内置电池为 NVRAM 驱动器提供电池备份。插槽 21 和 23 连接到节点 A 的内部电池设备,而节点 B 为插槽 22 和 24 供电。由于 NVRAM 驱动器包含易失性和非易失性介质,因此需要电池备份。易失性介质提供快速访问速度,并在设备正常运行时用作系统内写入缓存的备份位置。如果设备电源中断或系统关闭,则易失性写入缓存将转移到 NVRAM 驱动器内的非易失性介质。当写入缓存信息安全存储后,驱动器的电源将被切断,系统完成关机操作。NVRAM 设计和操作取代了保护 DRAM 写入缓存内容的需要。
PowerStore 的数据路径包括硬件和软件算法,它们协同工作以尽可能高效地接收和存储数据。PowerStore 的动态弹性引擎 (PowerStore DRE) 自动使用设备内的驱动器,使用系统中的所有驱动器创建适当的冗余。PowerStore DRE 支持单驱动器和双驱动器弹性。许多技术最大限度地减少了数据减少对性能的影响。写入缓存到双端口 NVRAM 驱动器,除使用镜像 DRAM 的入门级 PowerStore 500T 外,所有型号的两个节点都可以访问这些驱动器。压缩是在硬件中进行的,系统将写入以完整的 2 MB 条带形式分阶段到系统中的驱动器。重复数据删除以 4 KB 的粒度运行,并且在设备中的节点之间是全局的。
在本文中,我们认为,由于最近的技术进步,工作站网络 (NOW) 有望成为科学和工程的主要计算基础设施,从低端交互式计算到要求严格的顺序和并行应用程序。我们确定了 NOW 的三个机会,这些机会将使最终用户受益:通过使用 NOW 的聚合 DRAM 作为磁盘的巨型缓存,显着提高虚拟内存和文件系统性能;通过使用工作站磁盘的冗余阵列,使用 LAN 作为 I/O 背板,实现廉价、高可用性和可扩展的文件存储;最后,使用多个 CPU 进行并行计算。我们描述了利用这些机会的技术挑战 - 即高效的通信硬件和软件、多个工作站操作系统的全局协调以及企业级网络文件系统。我们目前正在构建一个 100 节点的 NOW 原型,以证明这些技术挑战存在切实可行的解决方案。
我们提出了玛格拉(Marghera),这是一种系统设计,可防止云中的跨VM微构造侧通道攻击。Marghera是基于隔离合同的,对于给定的CPU,它描述了物理线程和内存的分区,以防止通过共享的微构造资源来防止信息泄漏。我们为AMD EPYC 7543P(Modern Cloud CPU)开发了隔离合同。为此,我们首先确定如何在其物理线程之间共享微体系结构资源,包括缓存,cache-coherence目录和DRAM银行。然后,我们使用以前未知的,反向工程的索引功能开发着着色方案 - 全面分区这些资源。我们在Microsoft Hyper-V中实现Marghera,并使用云基准进行评估。我们的结果表明,我们的方法有效地消除了由共享的微构造资源造成的侧向通道,其性能较小。
高能电荷颗粒。电子孔对。电场将这些电子孔对分开,然后在敏感节点上收集。由于电荷积累而产生了短的电压脉冲。[5]。高密度记忆以及电子设备在生物应用中至关重要。低电压下运行记忆的主要基本原理是在尽可能少的能量的同时最大化电池寿命。正常6T SRAM单元的读取过程噪声免疫很小。随着电源电压的降低,噪声免疫力显着降低。结果,标准6T SRAM无法在低电源电压下操作。已知脱钩的7T和8T SRAM细胞的利用是通过将存储节点与位线分离出来,从而增强了读取操作过程中的噪声免疫。但是,值得注意的是,这些细胞具有相当大的泄漏功率。即使数百万个SRAM细胞可能保持在“待机状态”状态,记忆的功耗呈指数增长。[6] [7] [8] [9] [10]。嵌入式内存配置已通过现代VLSI(非常大规模的集成)系统增强。在处理RAM时,将DRAM(动态随机访问存储器)和SRAM(静态随机访问存储器)之间的区分至关重要。“静态”一词是指所有组件始终耦合到VDD或VSS的电路,从而消除了浮动节点问题,并允许仅使用电容器和单个晶体管构建DRAM单元。7T SRAM“随机”一词表示可以在需要时访问数据,并在可以存储的任何地方访问。访问需要内存搜索和位存储。每个单元存储一点点。[11] [12] [13]。SRAM单元是由晶体管和闩锁建造的。电容器都用于存储数据和检索数据,但是充电和排放它们的过程需要大量精力和时间。此益处是SRAM细胞广泛使用SOC的主要原因。[14] [15] [16] [17],其中它们是设计和实施的重要组成部分。响应于当前SOC技术的功耗降低和更高生产率的需求增加,已经创建了多种SRAM细胞设计,每种SRAM细胞设计都经过优化,以表现出色。这导致可以存储在给定数量的空间中的记忆量显着增加。
1 亚利桑那州公共服务委员会,案卷编号 E-01345A-19-0148,决定编号 77762,第 7 页(2020 年 10 月 2 日)。另请参阅 https://www.solaredge.com/us/aps-residential-program。2 太平洋煤气电力公司,《配电投资和延期框架伙伴关系试点》,网址:https://www.pge.com/en_US/for-our-business-partners/energy-supply/electric-rfo/wholesale-electric-power-procurement/didf-partnership-pilot.page;另请参阅加州公共事业委员会,第 21-02-006 号决定(2021 年 2 月 11 日),网址为 https://www.pge.com/pge_global/common/pdfs/for-our-business-partners/energy-supply/electric-rfo/wholesale-electric-power-procurement/DIDF%20Partnership%20Pilot/365628213.PDF。3 加州公共事业委员会,第 19-12-040 号决定(2019 年 12 月 23 日),网址为 https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M322/K796/322796293.PDF。另请参阅太平洋煤气电力公司,《2022 年需求响应拍卖机制 (DRAM)》,网址为 https://www.pge.com/en_US/large-business/save-energy-and-money/energy-management-programs/demand-response-programs/2022-demand-response/2022-demand-response-auction-mechanism.page?WT.mc_id=Vanity_dram。
在本文中,我们认为,由于最近的技术进步,工作站网络 (NOW) 有望成为科学和工程的主要计算基础设施,从低端交互式计算到要求严格的顺序和并行应用程序。我们确定了 NOW 的三个机会,这些机会将使最终用户受益:通过使用 NOW 的聚合 DRAM 作为磁盘的巨型缓存,显着提高虚拟内存和文件系统性能;通过使用工作站磁盘的冗余阵列,使用 LAN 作为 I/O 背板,实现廉价、高可用性和可扩展的文件存储;最后,使用多个 CPU 进行并行计算。我们描述了利用这些机会的技术挑战 - 即高效的通信硬件和软件、多个工作站操作系统的全局协调以及企业级网络文件系统。我们目前正在构建一个 100 节点的 NOW 原型,以证明这些技术挑战存在切实可行的解决方案。