自割液(SRF),例如长链酒精溶液,是一种特殊的具有表面张力的液体,其异常依赖于温度,导致热乳头流与正常流体(NFS)的热毛细血流显着差异。最近对SRF的兴趣主要是由于它们在各种微重力应用和微流体中增强流体动力学和热传输中的作用,而其许多基本过程仍未开发。这项研究的重点是模拟和研究在不均匀加热条件下与自吐液层相互作用的SRF滴的行为。在这方面,我们采用具有相位模型的强大基于中央力矩的晶格Boltzmann方法(LBM),该模型结合了三个分布功能:一种用于两流体运动的分布函数:高密度的高密度raTIOS,包括界面的Marangoni压力,用于基于保守的Allen-cahn等分的三分之二的界面,用于捕获的界面,并捕获三分之二有效效果。我们介绍了SRF中的合并和捏合过程,并将其与NFS中的合并过程进行比较。我们的模拟表明SRF比NFS早于捏。在SRF中,流体向界面围绕界面的较热区域移动,这与NFS中的流动相反。我们还观察到,增加ohnesorge数量OH抑制了捏合过程,突出了粘性力相对于表面张力的作用,该作用是由重力效应或键数BO调节的。此外,我们探讨了如何分别在温度,m 1和m 2上分别改变表面张力的无量纲线性和二次灵敏度系数,以及无量纲的无量化热通量q影响着结合/捏合行为。有趣的是,与未加热的情况相比,在SRF中增加了M 2或Q,减少了捏合和扩大所需的时间。相比之下,在NFS中,增加M 1或Q会在捏合之前延长停留时间,并扩大了发生合并的OH-BO图中的区域。这些差异被证明是由于界面上热毛细力的变化所致。总体而言,我们发现在不均匀的加热下,SRF会增强捏合过程,从而在更广泛的条件范围内与NFS相比,捏合时间较短。
本研究提出了一种方法,该方法可以使用放电电压下降曲线在储能系统(ESS)中使用放电电压下降曲线来预测锂离子电池寿命的终结。该方法是根据发现随着循环循环而增加的发现,即锂离子电池的电压下降,并且可能与剩余容量有关。关键想法是在使用ESS期间以恒定的C率插入全部充电和放电的额外周期。在这个周期中,电压下降和容量之间的关系是通过回归技术离线建立的。然后将其用于估计电池周期期间的SOH和RUL。粒子滤波器(PF)算法应用于该末端,其中分别以降解和回归模型为状态和测量模型,并以样品的形式估算容量。然后将所获得的样品用于预测未来的行为,从中确定了RUL分布。研究的结论是,锂离子电池的电压下降可能是电池健康的良好指标,而PF是一个有用的工具,即使在用途周期中间的电荷放电条件发生变化时,也可以准确预测统治。
您可以使用多种方法来搜索课程。您可以按关键字、主题搜索,或使用特定条件执行高级搜索。如果您知道课程前缀,请使用关键字搜索,例如 INT-1010。
氧化镁(MGO)是制造热电池的关键粘合剂材料,这是由于其稳定性和固定熔融电解质的能力。已建立的供应链可以停止生产,并且必须在时间和收入方面对新来源进行巨大的评估。为了确保供应这种关键材料,Qynergy为电解质开发了MGO粘合剂材料(“ Gomax”)。新的MGO粘合剂材料是科学设计的,可以从多个前体生产,从而减轻供应链风险。这项工作的目的是证明从合成前体产生的好处,以及能够调整形态学特性的能力,可以“拖放” AS合成的MGO进入当前的分离器设计而不破坏Pellet Pellet Pellet生产或电池性能。在当前工作中,Qynergy Gomax Mgo的两种形式的特征是Enersys Advanced Systems Inc.内部制造的电解质盐混合物(EAS),以证明合成材料的可调性和与当前使用的材料的常见形态。测试包括使用Gomax的不同迭代的Gomax和电解质/粘合剂(EB)混合物的形态表征。EAS和Qynergy表现出了高电池中使用的Gomax和当前粘合剂的常见物理特性。关键字热电池;氧化镁;粘合剂;分离器;粒度分布;形态学;单细胞。
- 目前通过降落测试的撞车道值针对燃料电池和燃油箱进行调节。由于燃油箱的流行和飞机中电池系统的新颖性,Easa采用了这些燃油箱掉落测试要求,将电池系统用作起点。FAA也在同时研究更永久的方法的同时,正在追求这一道路。- 燃油系统的滴测试需要将50英尺的几乎填充的燃料系统置于平坦的,不形成的表面上。在滴落后,监视燃油系统以泄漏或火灾。同样,电池系统应重新充电并从至少50英尺处掉落,然后监视气体或液体的泄漏以及火灾或爆炸。•此测试程序和仿真研究将提供有关与FAA和行业相关的项目的信息:
传输冷却器在正确的温度范围( +2.0°C和 +8.0°C之间),然后才能接收疫苗订单。请确保您的冷却器具有适当的设备(即数字温度计,冰袋,冰箱毯子和气泡包装),并在到达指定的接送位置时预先调查 +2.0°C和 +8.0°C之间。4。一旦您的传输冷却器的温度已确认为温度范围,约克地区
摘要:随着微电子封装与集成化的快速发展,封装结构中微焊点在冲击载荷作用下的失效风险日益受到关注。然而,由于尺寸减小和接头结构的演变,基于铜柱的微凸块接头的失效机理和可靠性性能很少能借鉴现有的板级焊点研究成果。本研究针对芯片上芯片 (CoC) 堆叠互连的微凸块接头的开裂行为,对 CoC 测试样品进行反复跌落试验以揭示裂纹形貌。研究发现,导致微凸块失效的裂纹首先在金属间化合物 (IMC) 层与焊料的界面处萌生,沿界面扩展一定长度,然后偏转到焊料基体中。为进一步探究裂纹扩展机理,采用围线积分法计算了IMC与焊料界面处裂纹尖端的应力强度因子(SIF),定量分析了焊料厚度和裂纹长度的影响,并与裂纹偏转准则相结合。将SIF与焊料-Ni界面和焊料基体的断裂韧性相结合,建立了裂纹偏离原始扩展路径的准则,可用于预测裂纹偏转的临界裂纹长度和偏转角。最后,通过板级跌落试验验证了焊料厚度与主裂纹临界偏转长度和偏转角之间的关系,并简要讨论了焊料基体中晶粒结构对实际失效寿命的影响。
印度班加罗尔 pujari.ankush@iitb.ac.in; rudrodip@nias.res.in; sandip.saha@iitb.ac.in 摘要 - 热化学储能 (TCES) 因其高热能密度和在相当长的时间内可靠的保温而没有显著损失,在季节性储热和空间加热应用中越来越受到关注。盐水合物和潮湿空气基固气反应对已被证明对空间加热特别有用。以电能形式吹过填料床反应器所需的辅助功率是一个重要的考虑因素,因为它取决于系统的各种设计参数。本研究提出了一种径向流环形反应器配置。它显示流动工作要求减少了 65%-80%。需要优化流动方向和流速等参数以获得更好的性能并确保更少的流动工作要求。关键词:热化学储能、径向流、环形反应器、压降。1. 简介
抽象跌落冲击可靠性测试是在电路板上进行的,该电路板与包括SAC305(SN3.0AG0.5CU)在内的几种不同的无铅焊料合金组装。AG含量的焊料组成范围从0%到3.0%按重量。还包括具有各种二级合金元件的合金。所有滴测试板都组装在一起,以使焊料糊状成分与BGA焊球合金的焊料组成相匹配,以生产已知成分的均匀焊接接头。使用替代测试板设计(不是JEDEC标准)进行此下降测试评估。测试板包含一个位于中央的Cabga 256包装(17x17毫米车身,1毫米螺距)。板设计的板设计了焊接定义的垫子,以最大程度地降低层压材料中垫板的碎屑破坏模式的发生。使用BGA或LGA互连将测试套件焊接到下降板上,以探索焊接量的效果。下降冲击事件的特征是在滴度表上进行加速监测,并在安装的测试板上的应变计测量值。
摘要 - 片上功率电网(PG)的摘要分析至关重要,但由于综合电路(IC)量表的迅速增长,在计算上具有挑战性。当前EDA软件采用的传统数值方法是准确但非常耗时的。为了实现IR滴的快速分析,已经引入了各种机器学习(ML)方法来解决数值方法的效率低下。但是,可解释性或可伸缩性问题一直在限制实际应用。在这项工作中,我们提出了IR融合,该IR融合旨在将数值方法与ML相结合,以实现静态IR滴分析中准确性和效率之间的权衡和互补性。具体而言,数值方法用于获得粗糙的解决方案,并利用ML模型进一步提高准确性。在我们的框架中,应用有效的数值求解器AMG-PCG用于获得粗糙的数值解决方案。然后,基于数值解决方案,采用了代表PG的多层结构的层次数值结构信息的融合,并设计了Inpection unet u-net模型,旨在捕获不同尺度上特征的详细信息和相互作用。为了应对PG设计的局限性和多样性,将增强的课程学习策略应用于培训阶段。对IR融合的评估表明,其准确性明显优于以前的基于ML的方法,同时需要在求解器上迭代较少的迭代才能达到相同的准确性,与数值方法相比。