自发染色体重排 (CR) 在物种形成、基因组进化和作物驯化中起着至关重要的作用。为了能够利用 CR 的育种潜力,人们开始通过 X 射线照射将染色体片段化,从而进行植物染色体工程。随着 CRISPR/Cas 系统的兴起,人们可以高效地在任意染色体位置诱导双链断裂 (DSB)。这使得预先设计的染色体工程达到了全新的水平。可以通过诱导染色体易位来打破特定基因之间的遗传连锁。可以恢复抑制遗传交换的自然倒位以进行育种。此外,人们已经开发出各种通过缩小常规标准 A 染色体或额外 B 染色体来构建微型染色体的方法,这些方法可以作为未来植物生物技术的载体。最近,人们可以构建一个功能性的合成着丝粒。此外,人们已经建立了不同的基因组单倍体化方法,其中一些方法基于着丝粒操作。未来,我们期望看到更复杂的重组,这些重组可以与重组酶等先前开发的工程技术相结合。染色体工程可能有助于重新定义遗传连锁群、改变染色体数量、在微型载货染色体上堆叠有益基因,或建立遗传隔离以避免杂交。
《自然》杂志上发表的一篇文章( Anzalone 等人,2019 年)报道了一种基因组编辑实验方法的开发,该方法无需双链断裂 (DSB) 或供体 DNA (dDNA) 模板,即可介导人类基因组中所有可能的碱基到碱基的转换、“插入/缺失”和组合。Prime 编辑是一种新颖的基因组编辑方法,它利用一种比平常更长的单向导 RNA (gRNA),称为 Prime 编辑 gRNA (pegRNA),以及一种由 Cas9 H840A 切口酶与工程逆转录酶 (RT) 融合而成的融合蛋白。Prime 编辑被描述为“搜索和替换”碱基编辑技术,它在 gRNA 的延伸中提供所需的遗传构建体,然后使用 RT 酶将其转化为 DNA。与传统的 CRISPR-Cas 设备相比,新方法无需同时递送校正 DNA 模板,可执行所有可能的核苷酸替换(包括针对相当一部分遗传疾病的替换),解决插入/缺失引起的移码问题,并减少脱靶编辑。Prime 编辑是对现有 CRISPR 编辑系统的一个令人兴奋的新补充,在许多情况下甚至可能是一种改进。然而,Prime 编辑带来了新的挑战。克服这些障碍并在体内应用 Prime 编辑,将带来针对罕见遗传疾病的新型基因组编辑疗法。
图1:对称PRDM9结合如何促进染色体配对的模型。在特定靶基序的结合DNA时,PRDM9(橙色椭圆形)将DNA段接近染色体轴。PRDM9绑定的某些站点可能会经历DSB(红色星星)。DSB的切除会生成一个单链端,该端将搜索一个补充序列,以用作修复模板。在对称绑定prDM9的情况下(即在两个同源物上,左侧的情况),假设同源搜索仅限于轴区域,则更直接访问了同源物的两个姐妹染色单体所提供的模板,从而促进同源性搜索并与同源物配对。然后可以将断裂作为CO或NCO事件修复,在这两种情况下,都可以在破裂的位点实现基因转换。在不对称的PRDM9结合(右侧显示的情况)的情况下,同源物不太直接访问,从而阻止了有效的同源物参与。一旦同源物已突触(这要归功于其他DSB,都在同一对染色体上的其他地方的其他位置上出现的其他DSB,稍后将进行损坏的位点。 在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。稍后将进行损坏的位点。在与DSB相对应的位置上具有不活动的结合位点的情况下,NCO将有效地实现偏见的基因转换,而有利于无效版本。
CRISPR/CAS系统作为基因组编辑的生物技术工具的应用已彻底改变了植物生物学。最近,曲目通过CRISPR-kill扩展,通过组织表达消除基因组,从而使CRISPR/CAS介导的组织工程能够。使用金黄色葡萄球菌(SACAS9)的Cas9核酸酶,CRISPR-kill依赖于保守重复基因组区域中多个双链断裂(DSB)的诱导,例如rDNA,从而导致靶细胞的细胞死亡。在这里,我们表明,除了组织特异性表达的空间控制外,在拟南芥中,CRISPR介导的细胞死亡的时间控制是可行的。我们建立了一个化学诱导的组织特异性杀伤系统,该系统允许通过荧光标记同时检测靶细胞。作为概念证明,我们能够消除横向根和消融根干细胞。使用多组织启动子,我们在某些发育阶段在不同器官的定义时间点诱导靶向细胞死亡。因此,使用此系统使得有可能获得对某些细胞类型的发育层的新见解。除了在植物中实现组织工程外,我们的系统还提供了一种宝贵的工具,可以通过位置信号传导和细胞间通信来研究开发植物组织对细胞消除细胞的反应。
识别靶DNA,然后利用内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3已经通过使用CRISPR/Cas9 DNA(可以编码Cas9的质粒DNA和病毒基因组)、mRNA或蛋白质获得了成功的基因编辑活动。4,5通常,直接递送Cas9/sgRNA RNP复合物是近年来最广泛的方法,因为它具有速度快、基因编辑效率高、离靶效应低和免疫反应低等优点。6然而,尽管基于RNP的治疗方法具有诸多优势,但仍存在一些挑战。目前,物理方法(电穿孔、显微注射等)和病毒载体(腺病毒、腺相关病毒等)仍然是主要的递送策略。 7,8 尽管已报道了一些非病毒纳米载体(如 DNA 纳米线、9 阳离子脂质或聚合物 10 和黑磷 11)用于 RNP 递送,但它们仍然难以在体外和体内实现有效的基因编辑。一般来说,有三个递送问题需要考虑。首先,CRISPR/Cas9 RNP 尺寸较大,表面带电较多,难以浓缩成小尺寸或封装。12
识别靶DNA,然后使用核酸内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3通过使用CRISPR/CAS9 DNA(可以编码Cas9的质粒DNA和病毒基因组),mRNA或蛋白质获得了成功的基因编辑活性。4,5通常,CAS9/ SGRNA RNP复合物的直接递送是近年来最广泛的方法,因为其快速作用,高基因编辑效率,低邻靶效应和免疫反应。6然而,对于基于RNP的治疗剂的所有优势,仍然存在一些挑战。目前,物理方法(电力,显微注射等)和病毒载体(腺病毒,腺病毒相关病毒等)仍然是主要的交付策略。7,8尽管已经报道了一些非病毒基纳米载体,例如DNA纳米载体,9张阳离子脂质或聚合物,10和黑磷11用于RNP递送,但它们仍然难以实现,无法实现在体外和体内进行效率的基因。一般而言,需要考虑三个交付过程。首先,CRISPR/CAS9 RNP尺寸较大,表面高度高,因此很难将其凝结成小尺寸或封装。12
生成 KO 动物使观察整个生物体基因被破坏时的情况成为可能,并能解答各种疾病的起源和发展过程。虽然经过漫长的历程才开发出现在易于生成的模型,但如今这些动物模型的生成效率已经足够高。生成 KO 小鼠的最初两种方法是基因捕获(Gossler 等人,1989 年)和基因打靶(Mansour 等人,1988 年)。这两种方法都需要胚胎干细胞 (ESC),产生的是嵌合小鼠,既不经济也不省时。转座子系统也是破坏小鼠基因的实用工具(Dupuy 等人,2001 年),然而,基于转座子的方法后来被证明在创建转基因动物方面非常有效(Garrels 等人,2011 年,Katter 等人,2013 年)。位点特异性核酸内切酶、TALEN、ZFN 和 CRISPR/Cas9 是基因编辑工具箱的最新成员。TALEN 和 ZFN 需要工程蛋白,而 CRISPR/Cas9 是 RNA 引导的。CRISPR/Cas9 基因编辑需要 Cas9 mRNA 或蛋白和单向导 RNA (sgRNA),后者由反式激活 RNA 和 CRISPR RNA 组成。上述所有核酸内切酶都会在基因组中诱导位点特异性双链断裂 (DSB),这通常是
(LOX),一氧化氮合酶(NOS)和环氧合酶(COX)。这些自由基和氧化应激分子会导致直接或间接的氧化DNA损伤,从而导致各种细胞存活调节机制,例如有丝分裂灾难,衰老,凋亡和自噬(Wei等,2019)。在抗肿瘤疗法中,IR不仅诱导压力诱导的调节性细胞死亡,而且还通过影响肿瘤相关的细胞因子或特定抗原而促进抗肿瘤免疫反应,从而诱导免疫原性细胞死亡(Zhu等,2021)。在内皮细胞和造血系统中,IR和ROS破坏细胞膜完整性,导致局部钙插入,溶酶体融合,并通过生物物理机制诱导细胞死亡(Ferranti等,2020)。辐射还可以裂解二硫键并改变蛋白质构象,破坏蛋白质的正常生物学功能并影响细胞活性(Fitzner等,2023)。在DNA上,IR诱导了自由基阳离子(孔)的产生,导致DNA-蛋白交联(DPCS)(Wen等,2023)。此外,IR通过瞬时瞬时分子共振的快速衰减而引起了显着量的单链和DSB,该共振位于基本DNA成分上(Boudaïffa等,2000)。
白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
间充质干细胞(MSC)是多素的成年干细胞,对基于细胞的再生疗法有很大潜力。体外扩展改变其表观遗传和细胞特性,对DNA损伤反应(DDR)和基因组稳定性的影响很差。我们在这里报告了基于转录组的基于转录组的途径分析的结果,该途径分析了体外 - 脱落的人骨骨髓衍生的间充质干细胞(HBM-MSC),并补充了针对DNA双链断裂(DSB)修复的细胞测定。使用基因,KEGG和GSEA映射受体外衰老影响的基因途径,并被发现涉及DNA修复,同源重组(HR),细胞周期控制和染色体复制。在HBM-MSC中对X射线诱导的X射线诱导的DNA DSB的识别(C-H2AX + 53BP1焦点)的测定表明,在8周的体外衰减期间(即10个双倍的时间),细胞表现出较高的DDRADNA ddra。此外,观察到对DNA DSB识别受损的细胞的明显亚群。通过HR(例如Rad51,Rad54,BRCA1)参与DNA修复中的几个基因显示2.3至四倍降低了QRT-PCR的mRNA表达。我们得出的结论是,HMSC的体外扩张会导致与DNA断裂的识别和修复的衰老相关损害。
