由于过去五年中钙钛矿太阳能电池行业的爆炸性增长,其他有机太阳能电池的局限性一直是DSSC研究的持续重点。尽管大多数PV技术无法成功,湿度,氧气状况和易于生产过程对DSSC有利。13 DSSC的一个重要好处是它们在所有照明情况下,甚至在室内照明的情况下产生的特殊功率。已经发现,在使用或昏暗的阳光条件下,基于硅的太阳能电池表现不佳。13–15 DSSC以有效而有效的方式满足了此要求差距。使用DSSC进行的室内光收集甚至超过了30个百分比,而没有共敏化器。对于无线传感器节点,助图电子,可穿戴技术和智能电表,DSSC可以在室内用作便携式电子模块。16扩大规模的潜力,使生产成本最小化是DSSC研究中的关键游戏规则改变者。由于它们具有室内照明的潜力,DSSC可以最大程度地提高能源效率,同时最大程度地减少其碳足迹。
在染料敏化的太阳能电池中,金属复合物,无金属和天然光敏剂的概述Sharad A. Mahadik,1 Habib M. Pathan 2和Sunita Salunke-Gawali 1,*摘要在染料敏化的太阳能电池(DSSCS)中显示了很多兴趣,以使能量源可转换。本评论探讨了DSSC中的最新发展,强调了使用的各种光敏剂。金属络合物,无金属,新颖的萘酮光敏剂和自然光敏剂都涵盖了讨论;每个都有独特的品质和优势,有助于提高DSSC的有效性。在DSSC中,金属复合物对于改善电荷分离和光吸收至关重要。金属配合物的复杂配位化学允许对其光学和电气特性进行自定义控制,从而增强了它们在太阳能电池中的性能。基于钌的光敏剂表现出较高的稳定性,有效的自然可见阳光和出色的氧化还原特性。相比之下,有机和无金属的光敏剂变得越来越流行,因为它们便宜且对环境更好。对无金属替代品的搜索创造了开发可扩展且可持续的太阳能电池技术的机会。天然光敏剂为DSSC技术提供了可再生且环保的方法,因为它们具有出色的轻度收获特性和生物相容性。光敏剂,电解质,反电极和光阳极在DSSC机制中错综复杂。本综述提供了DSSC的工作原理,重点介绍了研究和开发方面的最新进步和挑战。电解质,反电极,导电透明的底物,例如氟掺杂的氧化锡(SNO 2:F,FTO)和indium-tin-氧化物(在2 O 3:SN,ITO中),金属氧化物半导膜包括在此综述中。因此,在此,我们讨论了DSSC的组成部分以及光敏剂的优势和缺点。全面的评论旨在为当今的DSSC的状况提供完整的图片,强调使用各种光敏剂的进步,并阐明指导其功能的复杂机制。本文的见解支持继续尝试创建可持续有效的太阳能转换技术。
在染料敏化的太阳能电池(DSSC)中,光被敏化的染料吸收。当光撞击染料分子时,它会吸收光子并将其兴奋至更高的能量状态。这种激发态允许染料分子将电子注入半导体的传导带,从而产生电流。选择染料特性非常重要,因为它可以帮助提高DSSC的性能。然而,从相同批次用作染料的植物或水果的相同输出电流特性非常困难。此外,改善了制造染料敏化的太阳能电池的电性能,例如短路电流密度和效率,这是至关重要的,因为需要考虑许多实验因素。因此,要最大程度地减少材料资源的额外利用,这是由于制造不成功的风险并理想地获得更好的性能,进行基于模拟的研究对于优化DSSC的性能很重要。自由软件通用光伏设备模型(GPVDM)是一个有前途且有趣的工具,因为它的免费许可和通过图形接口易于访问,用于模拟光电设备,包括OLED,OFET和各种类型的太阳能电池。本文考虑了3-D光伏设备模型GPVDM,以模拟用不同的叶绿素染料样品以DSSC性能模拟所提出的结构。本文旨在表征基于叶绿素的DSSC的高电流密度 - 电压(J-V),并确定合适的光伏仿真软件,用于运行基于叶绿素的DSSC的模拟。最后,将结果与各种文献来源中报道的实验数据进行了比较。结果表明,对于虫丝豆糖叶(CHL E),增强的短路电流密度(JSC)为0.3556 mA cm -2,这是所测试的其他染料中最高的。模拟短路电流密度(JSC)的值与已发表论文中报道的JSC的实验结果略有不同。总而言之,GPVDM可被认为适用于建模DSSC。
染料敏化太阳能电池(DSSC)一直是材料与能源领域的研究热点,这主要归功于其制备工艺简单、成本低廉、颜色多样、灵活性强等特点(Bajpai et al.,2011)。典型的DSSC由光阳极、电解液和对电极三部分组成。光阳极接收光子并发射电子到外电路(Hong et al.,2008),电子经过负载后通过对电极被送到电解液中,还原电解液中的I3−(Zhu et al.,2017)。Pt作为贵金属,凭借优异的导电性和催化性能,是目前传统对电极的主流选择(Ghosh et al.,2020),但Pt资源稀缺且价格昂贵,不利于DSSC的大规模生产(Hauch and Georg,2001)。此外,碘基电解液和空气对Pt也有腐蚀作用,缩短电池寿命(Olsen等,2000)。因此,寻找廉价、耐腐蚀的对电极替代材料十分必要(Sun等,2014)。石墨烯作为二维碳材料,因其电导率、多孔结构、比表面积、耐腐蚀等特性,在DSSC研究领域被广泛用作对电极(Kavan等,2011;Battumur等,2012;Liu等,2020a;Liu等,2020b;Liu等,2020c)。 Roy-Mayhew 观察到调整石墨烯中碳氧比例可提高电池效率(Roy-Mayhew et al.,2010)。Choi 等对石墨烯进行高温处理,并将其用于 DSSC 中,以提高效率(Choi et al.,2011)。近年来,将其他性能优异的材料与石墨烯复合成为研究热点(Peng et al.,2011;Wang et al.,2012)。Dou 等将 Ni12P5 粒子与石墨烯复合作为 DSSC 的对电极,获得了 5.7% 的效率,表明电化学性能有所提高(Dou et al.,2011)。Wen 等将 TiN 与氮掺杂的石墨烯复合材料用于提高电催化性能(Wen et al.,2011)。石墨烯与其他材料的复合材料已成为研究的热点(Peng et al.,2011;Wang et al.,2012)。
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
摘要:在染料敏化的太阳能电池(DSSC)中,反电极(CE)作为电子传递剂和氧化还原夫妇的再生剂起着至关重要的作用。与通常由玻璃基底物(例如FTO/玻璃)制成的常规CE,聚合物底物似乎是新兴的候选物,这是由于它们的内在特性轻巧,高耐用性和低成本。尽管有很大的希望,但当前的CES在聚合物基板上的制造方法遭受了严重的局限性,包括低电导率,可伸缩性,过程复杂性以及对专用真空设备的需求。在本研究中,我们采用并评估了一条完全的加性制造路线,该路线可以以高通量和环保的方式为DSSC制造CE,并提高性能。提出的方法顺序包括:(1)材料挤出3-D打印聚合物底物; (2)通过冷喷雾颗粒沉积的导电表面金属化; (3)用石墨铅笔过度涂层薄层催化剂。制造的电极的特征是微结构,电导率和光转换效率。由于其有前途的电导率(8.5×10 4 S·M-1)和微区岩石表面结构(rA≈6.32µm),与由FTO/Glass制成的传统C相比,具有添加性生产的CES的DSSC导致了繁殖的CES,导致了约2.5倍的光率效率。研究结果表明,提出的添加剂制造方法可以通过解决常规CE制造平台的局限性来推动DSSC的领域。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
在开发、部署和维持数据空间以支持数据生态系统的过程中,存在许多基本的技术、组织、法律和商业挑战。这个由数据空间支持中心 (DSSC) 开发的入门套件为想要建立或参与数据空间的个人或组织提供了一个切入点。这包括数据空间设计者、数据生产者、数据消费者、数据空间中介服务提供商以及数据驱动服务和业务应用程序的提供商。它概述了在数据空间内实现互操作性、信任和价值创造的不同维度,帮助您了解 DSSC 作为欧洲数据战略支架的作用,并指出了一组可以提供进一步指导和支持的资源。有关数据的完整列表
随着荷兰国防空间安全中心 (DSSC) 的成立,国防部负责开发空间态势感知,而为此需要各种系统。本文将从国防部的角度分析 SSA 的需求,并介绍 DSSC 如何努力发展这一能力。此外,本文还将简要介绍未来的需求,以及新技术如何帮助相对较小的国防部开发直接支持作战的相关资产。我们将与机构和行业寻求合作,以开发相关知识、技术和能力。最后,本文将概述荷兰 SSA 生态系统。特别是,荷兰应用科学研究组织 (TNO) 将展示目前正在开发和测试的用于地面和空间 SSA 应用的光机仪器和传感器。