摘要:2,4,6三硝基甲苯(俗称TNT)是军事和商业用途最安全、应用最广泛的高能材料之一。第二次世界大战期间,大量TNT被用于填充用于对付敌人的各种常规弹药。结果,大量无用弹药被闲置,要么通过常规处置技术处理,例如露天燃烧、露天引爆、倾倒到海中、焚烧、生物降解,要么未经适当处置就埋入地下。据报道,在处置这些无用和不需要的弹药时发生了多起事故。为了避免这种有害情况,过去全球都在努力重新利用不需要的高能材料,但在这方面仍需要付出更多努力。本研究旨在将倾析的TNT安全转化为可用于采矿、采石、水下爆破活动的商业级高能材料。为此,我们利用各种材料/成分与倾析的 TNT 合成新形成的熔融铸造商业级高能材料。我们通过热重/差热分析 (TG/DTA)、扫描电子显微镜 (SEM) 和 X 射线衍射 (XRD) 技术进一步表征了该特定样品,以识别各个方面。结果表明,新合成的样品具有清晰、致密和
摘要 本研究介绍了对蜂蜡作为热能存储低温相变材料的研究。热能存储技术有可能实现能源的可持续性,特别是在高温和低温应用中的太阳能和废热回收方面。蜂蜡已被确定具有用于热能存储 (TES) 的潜力。本研究调查了来自不同筑巢生态的三种蜂蜡样品的热稳定性和生命周期。使用差示扫描量热法 (DSC)、热重分析 (TGA) 和差示热分析 (DTA) 来确定它们是否适用于低温热能存储应用。结果表明,样品 A、B 和 C 的蜂蜡在 60 o C 至 270 o C、60 o C 至 260 o C 和 60 o C 至 250 o C 的工作温度下具有稳定性。使用 Coffin Mason 方程进行的生命周期分析表明,该材料在蜂蜡稳定温度范围内可存活 34.76 年。因此,蜂蜡可用于低温储热应用。
在这项研究中,使用绿色化学还原方法合成了氧化石墨烯材料,并使用印度印度印度河(Celastrus Hindsu Benth)叶子提取了RGO,并通过绿色化学还原方法合成RGO。结构,形态,化学组成和特性的特征是由XRD,FT-IR,Raman散射,EDX,SEM,TEM,TGA/DTA等测量确定的。结果表明,石墨氧化过程导致了许多含氧官能团的出现,从而导致表面形态揭示出皱巴巴而波纹的结构。 26,5 O时的衍射峰(002)移至10,1 O,C/O的整数原子降低。在降低过程中,提取物中的多酚化合物反应,导致材料表面上含有O-的含有官的数量,衍射峰(002)移至约25O。然而,衍射峰的强度很弱,还原尚未完成。最后,RGO材料的热稳定性比GO更好,这与它们的结构特性一致。
摘要:对采用选择性激光熔化 (SLM) 技术制备的 Inconel 718 (IN718) 高温合金样品进行不同的加热循环,并研究其微观结构特征。选定的加热速率范围从 10 ◦ C / min 到 400 ◦ C / s,代表焊接增材制造试件热影响区 (HAZ) 中的不同区域。采用差示热分析 (DTA)、高分辨率膨胀仪以及激光共聚焦和电子显微镜相结合的方法研究了第二相的析出和溶解以及微观结构特征。为此,从与支撑接触的底部到顶表面研究了增材制造试件的微观结构。结果表明,在高加热速率下,γ”和δ相的溶解延迟并转移到更高的温度下。微观结构分析表明,枝晶间区域的 Laves 相在靠近样品表面的特定区域分解。确定这些区域的厚度和面积分数与施加的加热速率成反比。提出了一种可能的机制,该机制基于加热速率对枝晶间区域和枝晶核心中 Nb 扩散的影响,以解释观察到的微观结构变化。
根据联合旅行条例 (JTR) 第 010201-A 条,旅行者是指为国防部出差的任何人。与个人旅行不同,政府任务有特定的规则和限制(JTR,第 010201-A 条、第 010201-B 条和第 010201-C 条)。对于临时值班 (TDY) 和本地旅行(JTR,第 010205 条),国防部旅行者和 AO 必须使用国防旅行系统 (DTS),该系统经过编程以支持 JTR 旅行合规性,包括预审标志和需要说明理由的原因代码(当超出定义的参数时)。当 DTS 可用时,JTR 第 010205 条规定,“旅行者必须尽可能使用 DTS 来安排所有途中的交通、租车、商业住宿和政府宿舍”。 DTS 和服务旅行管理公司 (TMC) (JTR,第 010201-C 段) 共同确保国防部官方旅行者从 A 点到 B 点的移动。DTS 用户和 TMC 之间的清晰沟通对于及时获得正确预订的预订和出票以满足任务至关重要。本指南介绍了 DTS 预订流程和 TMC,提供了一些最佳实践建议、故障排除和旅行情况的典型解决方案。内容针对旅行者、授权官员 (AO) 和国防旅行管理员 (DTA),但对于任何想要了解 DTS 和 TMC 的人来说都很有用。
微化晶体中的结晶石和簇大小对于增强粉末宿主中激光作用至关重要,以获得固态随机激光器。结晶石从50至200 nm的范围内,小于1 µm的晶体簇在此应用中不受欢迎,因为这些特征会增加激光阈值[1-2]。形态在粉末发光上也起着重要作用。很少有作品将这种影响对激光作用[3]。最近,属于该家族的双钨的欧盟3+激活的纳米和微溶液晶体的发光研究是(WO 4)2,其中A是碱金属,并且在文献中广泛报道了稀土离子[4]。这些研究表明,这些欧盟掺杂的宿主非常有希望,对于由于强发光而与y 2 o 2 s相比,由于强劲的发光以及化学稳定性,用于W的红色发射材料,这是该设备中使用的通常的化合物。此外,对于固态随机激光器的双钨微化颗粒仍然没有研究。在这项工作中,有人建议通过改良的pechini sol -gel方法获取未掺杂和nd 3+掺杂的lila(WO 4)2的样品。分析了钙化时间和温度对形态,结晶石和簇大小的影响。样品以DTA,SEM,XRD和光散射为特征。
药物-靶标结合亲和力预测在药物发现的早期阶段起着重要作用,可以推断新药与新靶标之间相互作用的强度。然而,以前的计算模型的性能受到以下缺点的限制。药物表示的学习仅依赖于监督数据,而没有考虑分子图本身所包含的信息。此外,大多数以前的研究倾向于设计复杂的表示学习模块,而忽略了用于衡量表示质量的均匀性。在本研究中,我们提出了GraphCL-DTA,一种用于药物-靶标结合亲和力预测的具有分子语义的图对比学习。在GraphCL-DTA中,我们设计了一个针对分子图的图对比学习框架来学习药物表示,从而保留了分子图的语义。通过该图对比框架,可以在不需要额外监督数据的情况下学习更本质、更有效的药物表示。接下来,我们设计了一个新的损失函数,可直接用于平滑地调整药物和靶标表示的均匀性。通过直接优化表示的均匀性,可以提高药物和靶标的表示质量。在KIBA和Davis两个真实数据集上验证了上述创新元素的有效性。GraphCL-DTA在上述数据集上的优异表现表明了其优于当前最佳模型。
由于与二元相互作用预测相比,药物-靶标结合亲和力 (DTA) 的识别具有更具体的解释能力,因此在药物发现过程中引起了越来越多的关注。最近,由于其令人满意的性能,许多基于深度学习的计算方法来预测药物和靶标之间的结合亲和力。然而,之前的工作主要集中于编码药物和靶标的生物学特征和化学结构,缺乏从药物-靶标亲和力网络中挖掘必要的拓扑信息。在本文中,我们提出了一种用于药物-靶标结合亲和力预测的新型分层图表示学习模型,即 HGRL-DTA。我们模型的主要贡献是建立一个分层图学习架构,以结合药物/靶标分子的固有属性和药物-靶标对的拓扑亲和力。在这个架构中,我们采用了一种消息广播机制来整合从全局级亲和图和局部级分子图中学习到的层次化表示。此外,我们设计了一个基于相似性的嵌入图来解决推断未见药物和靶标表示的冷启动问题。不同场景下的综合实验结果表明,HGRL-DTA 明显优于最先进的模型,并且在所有场景中都表现出更好的模型泛化能力。
课程编号和标题:EN307能源应用的材料科学L-T-P-C:(奇数 /偶数 /任何)提供的3-0-2-8:学期vi vi vi前提条件:零序言 /目标(可选):使学生理解材料原理,以及用于能源生产,收获对转换和存储的材料的不同类型。此外,根据分析工具对不同的能源材料进行分类。课程内容/教学大纲:材料科学概论,太阳能材料:半导体,本金和概念,硅类型,钙钛矿,高级材料;能源收集材料:压电,pyroelectric,热电,涡轮机;储能和转换材料:无机,有机材料,聚合物;高级材料:纳米/量子材料,生物材料,添加剂,复合材料,杂种,自我修复,3D打印材料;表征:X射线方法,电子显微镜,光谱工具(UV - Vis,IR,Raman,Mass和NMR)的原理,仪器,操作和应用否则将其作为“参考”。教科书:(格式:作者,斜体字体,音量/系列,版本,出版商,年。)1。a s bandarenka,能源材料,简短的能源转换和存储功能材料介绍,CRS出版社,2022年。2。t ratna,纳米材料表征:引言,Wiley,2016年。
TEM 中的电子衍射及应用 1 STM、AFM 和纳米压痕 2 光谱技术(4 个讲座小时) 讲座小时 光谱分析的基本基础 1 EDS 和 WDS、EPMA 应用 1 X 射线光子光谱和俄歇电子光谱 1 SIMS 和 EELS 1 热分析技术(2 个讲座小时) 讲座小时 DSC/DTA/TGA/膨胀法 2 总讲座小时 40 参考文献: 1. 晶体和晶体结构,RJD Tilley,John Wiley and Sons,2006 2. 材料科学与工程 – WD Callister,Jr.Wiley India(P) Ltd.,2007 3. 材料科学与工程,GS Upadhyaya 和 Anish Upadhyaya,Viva books,2010 4. 材料科学基础 - 以金属为模型的微观结构-性能关系系统,EJ Mittemeijer,Springer,2010 5. 材料的微观结构表征 – D. Brandon 和 WD Kaplan,John Wiley and Sons,2008 6. 显微镜科学,PW Hawkes 和 JCH Spence,Springer,2007 7. 扫描电子显微镜和 X 射线微分析,J.Goldstein 等,Springer,2003 8. 透射电子显微镜 – BDWilliams 和 CBCarter,Springer,2009 9. 材料科学中的表面分析方法,编辑:DJO'Connor、BA Sextton、R.St. C. Smart,Springer,2003。10. 材料表征技术,S. Zhang、Lin Li 和 Ashok Kumar,CRC Press,2009