这意味着药剂师的私人能力以及制造过程的所有责任和管理授权和维护药物的责任,这扩展到数字药物,数字或数字疗法(DTX)。数字药物,挖掘和数字治疗学(DTX)在科学文献和实践中越来越多地使用术语,这些技术是通过研究促进临床证明的干预措施,提供新的治疗方法,提供新的治疗方法,提供补充并增强传统健康方法的方式,从而对医疗保健的个性化和准确性有很大的贡献。
介绍:卵巢癌是妇科系统的顽固恶性肿瘤,死亡率很高。Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。 但是,其临床应用受到差的生物利用度的阻碍。 已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。 因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。 方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。 模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。 在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。 结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。 药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。 MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。 体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。 关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。但是,其临床应用受到差的生物利用度的阻碍。已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付结论:我们通过全身给药设计了可注射的DTX-CUR/M纳米细胞,用于DTX和Cur剂的共递送到肿瘤部位。DTX-CUR/M纳米固体将是一种可生物降解,可持续和强大的抗肿瘤药物候选者,具有巨大的卵巢癌治疗潜力。
含有两种不同靶向剂的双受体靶向 (DRT) 纳米粒子可能比没有额外功能的单配体靶向纳米粒子系统表现出更高的细胞选择性、细胞摄取和对癌细胞的细胞毒性。本研究的目的是制备 DRT 聚(乳酸-乙醇酸)(PLGA)纳米粒子,用于将多西紫杉醇 (DTX) 靶向递送至 EGFR 和 PD-L1 受体阳性癌细胞,例如人多形性胶质母细胞瘤 (U87-MG) 和人类非小细胞肺癌 (A549) 细胞系。将抗 EGFR 和抗 PD-L1 抗体修饰在负载 DTX 的 PLGA 纳米粒子上,通过单乳液溶剂蒸发法制备 DRT-DTX-PLGA。还评估了 DRT-DTX-PLGA 的物理化学表征,例如粒度、zeta 电位、形态和体外 DTX 释放。 DRT-DTX-PLGA 的平均粒径为 124.2 ± 1.1 nm,具有球形和光滑的形态。在细胞摄取研究中,U87-MG 和 A549 细胞内吞的 DRT-DTX-PLGA 为单配体靶向纳米粒子。从体外细胞毒性和细胞凋亡研究中,我们报告说,与单配体靶向纳米粒子相比,DRT-DTX-PLGA 表现出高细胞毒性并增强细胞凋亡。DRT-DTX-PLGA 的双受体介导的内吞显示出高结合亲和力效应,导致细胞内 DTX 浓度高,并表现出高细胞毒性。因此,DRT 纳米粒子通过提供比单配体靶向纳米粒子更高的选择性来改善癌症治疗。
目的:非小细胞肺癌(NSCLC)治疗面临包括耐药性在内的障碍。设计了一种转铁蛋白功能化的蛋白质-脂质混合纳米颗粒(PLHN),其中同时装载顺铂(CIS)和多西他赛(DTX),用于肺癌治疗。方法:将CIS和DTX装入混合纳米颗粒中,然后用转铁蛋白(Tf)修饰。通过确定释放行为、体外细胞毒性和体内抗癌效率来研究Tf功能化的蛋白质-脂质混合纳米颗粒(Tf-CIS/DTX-PLHN)。结果:Tf-CIS/DTX-PLHN的纳米尺寸为189.5±5.9纳米,表面测试为-16.9±2.1 mV。 Tf-CIS/DTX-PLHN体外和体内抗肿瘤能力明显优于不含Tf的CIS和DTX共载脂质纳米粒(CIS/DTX-LN)、单一载药纳米粒和游离药物。结论:由于Tf的增效作用和药物的协同作用,Tf-CIS/DTX-PLHN可以抑制肺癌肿瘤生长,有助于肺癌的治疗。关键词:肺癌,混合纳米粒,纳米结构脂质纳米粒,蛋白质纳米粒,转铁蛋白
本研究的目的是制备和表征用于治疗前列腺癌的载多西紫杉醇 (DTX) 的靶向固体脂质纳米粒 (SLN)。通过将茴香酰胺 (Anis) 配体定位在 SLN 表面,可以与前列腺癌细胞上过表达的 σ 受体相互作用,实现了目标。通过高剪切均质化和超声波处理法制备负载 DTX 的 SLN,并通过实验设计进行优化。最佳 DTX-SLN 的平均粒径和包封率分别为 174 ± 9.1 nm 和 83 ± 3.34%。差示扫描量热法的结果表明,DTX 以无定形状态分散在纳米载体中。扫描电子显微镜 (SEM) 图像证实了纳米粒子的纳米级尺寸和球形形状。细胞毒性研究表明,游离药物、DTX-SLN 和 DTX-SLN-Anis 的 IC 50 在 PC3 细胞系中分别为 0.25 ± 0.01、0.23 ± 0.02、0.12 ± 0.01 nM,在 HEK293 细胞系中分别为 20.9 ± 3.89、18.74 ± 7.43 和 14.68 ± 5.70 nM。与 DTX-SLN 和游离药物相比,靶向 DTX-SLN-Anis 对前列腺癌细胞的作用更有效。本研究的结果表明,靶向 SLN 中装载的抗癌药物可能是一种有前途的癌症治疗方法。此外,进行体内研究将对这些发现进行补充。
数字健康这一术语源于电子健康,其定义为“利用信息和通信技术支持健康和健康相关领域”。[1、2]。它描述了所有吸引消费者关注生活方式、健康和健康相关目的的技术、平台和系统;捕获、存储或传输健康数据;和/或支持生命科学和临床操作[1、2]。数字治疗(DTx)是数字健康的一个分支,由数字治疗联盟定义为“向患者提供由软件驱动的循证治疗干预,以预防、管理或治疗医疗障碍或疾病。它们可单独使用,也可与药物、设备或其他疗法配合使用,以优化患者护理和健康结果。”[3]。DTx 可以克服与传统临床实践相关的若干限制,降低就诊或就诊相关费用,[4]提高对健康生活方式行为和处方药的依从性[4]
目的:结肠癌的化学疗法需要改善,以减轻与细胞毒性药物相关的严重不良反应(AE)。这项研究的目的是开发一种具有实用应用潜力的新型靶向药物输送系统(TDD)。方法:TDD是通过在白蛋白纳米颗粒(NP)中加载多西他赛(DTX)构建的,这些纳米颗粒(NPS)用核糖素靶向的适体(AS1411)进行了功能化。结果:TDD(APT-NPS-DTX)的平均大小为62 nm,负电荷为-31.2 mV。dtx从白蛋白NP中释放出典型的持续发行轮廓。通过表达核仁素的CT26结肠癌细胞与对照细胞相比,优先摄入适体引导的NP。体外细胞毒性研究表明,APT-NPS-DTX显着增强了CT26结肠癌细胞的杀戮。重要的是,与未靶向的药物递送相比,APT-NPS-DTX治疗sig sig sig sig可提高抗肿瘤功效,并延长了CT26含有小鼠的存活,而不会提高系统性毒性。结论:结果表明APT-NPS-DTX在靶向治疗结肠癌方面具有潜力。关键字:适体,纳米颗粒,结肠癌,针对药物输送系统
缩写:stage,癌症分期;ACD,阿霉素、环磷酰胺和多西他赛联合化疗;DTX,多西他赛;CTCAE,不良事件常用术语标准;NCI-CTC,美国国家癌症研究所 - 常用毒性标准;N-LAN,淋巴结清扫术;MRM,改良根治性乳房切除术;RLNR,哨兵淋巴结清扫术和区域淋巴结照射;BIS,生物电阻抗谱
摘要 前列腺癌是一种全球性疾病,对生活质量产生负面影响。尽管已经开发出各种针对前列腺癌的策略,但只有少数策略实现了肿瘤特异性靶向。因此,人们特别重视使用纳米载体包裹的化疗药物与肿瘤归巢肽结合来治疗癌症。将药物与纳米技术相结合的靶向策略有助于克服最常见的障碍,例如高毒性和副作用。前列腺特异性膜抗原已成为前列腺癌的有希望的靶分子,并被 GRFLTGGTGRLLRIS 肽(称为肽 563 (P563))以高亲和力靶向。在这里,我们旨在评估 P563 结合的多西紫杉醇 (DTX) 负载聚合物胶束纳米粒子 (P563-PEtOx-co-PEI 30%-b-PCL-DTX) 对前列腺癌的体外和体内靶向效率、安全性和有效性。为此,我们使用 PNT1A 和 22Rv1 细胞通过细胞增殖试验分析了 P563-PEtOx- co -PEI 30% -b- PCL 和 P563-PEtOx- co -PEI 30% -b- PCL-DTX 的细胞毒活性。我们还通过流式细胞术确定了 P563-PEtOx- co -PEI 30% -b- PCL-FITC 的靶向选择性,并通过蛋白质印迹和 TUNEL 试验评估了 P563-PEtOx- co -PEI 30% - b- PCL-DTX 在 22Rv1 细胞中的细胞死亡诱导。为了研究体内疗效,我们将游离形式或聚合物胶束纳米颗粒中的 DTX 施用于无胸腺 CD-1 nu/nu 小鼠 22Rv1 异种移植模型,并进行了组织病理学分析。我们的研究表明,用 P563 共轭 PEtOx-co-PEI 30%-b-PCL 聚合物胶束针对前列腺癌可以发挥强大的抗癌活性,且副作用较小。
摘要:结肠癌占所有结直肠癌的三分之二以上,总 5 年生存率为 64%,当癌症发生转移时,这一比例迅速下降到 14%。根据结肠癌诊断时的分期,患者可以接受手术以尝试完全切除肿瘤,或直接使用一种或多种药物进行化疗。与大多数癌症一样,结肠癌并不总是对化疗有反应,因此已经开发了靶向疗法和免疫疗法来辅助化疗。我们报告了一种结肠癌局部联合疗法的开发,其中化疗和免疫治疗实体被递送到肿瘤内以最大限度地提高疗效并最大限度地减少靶向副作用。疏水性化疗剂多西他赛 (DTX) 和胆固醇修饰的 Toll 样受体 9 (TLR9) 激动剂 CpG (cho-CpG) 寡核苷酸共同装载在合成 HDL (sHDL) 纳米盘中。用 DTX-sHDL / CpG 进行肿瘤内治疗的 MC-38 肿瘤小鼠的体内生存分析(中位生存期;MS = 43 天)表明,与用单一药物、游离 DTX(MS = 23 天,p < 0.0001)或 DTX-sHDL(MS = 28 天,p < 0.0001)治疗的小鼠相比,总体生存率显著提高。用 DTX-sHDL / CpG 治疗的七只小鼠中有两只肿瘤完全消退。所有小鼠均未出现任何全身毒性,体重维持和血清酶和蛋白质水平正常。总之,我们已经证明化疗和免疫疗法可以共同加载到 sHDL 中,局部递送到肿瘤,并且与单独化疗相比,可用于显着改善生存结果。