1。该文档是由NCCS编写的,是创建用于各种网络产品安全测试案例的参考方法。此处提供的测试用例本质上是通用的,并且已作为IP路由器安全测试的示例准备。该文档可以由TSTL自定义,以创建其他网络产品的测试用例。制定结论性测试计划的责任与TSTL有关。2。该文档包含条款明智的测试目标和通用测试用例,以理解目的。但是,根据DUT功能,实际的测试案例和前提条件可能会有所不同,测试计划将相应地创建。此外,根据DUT功能,TSTL可能会添加其他测试案例,以进行DUT的结论测试。3。在提交测试计划时,TSTL还需要包括该命令,该命令应用于测试该条款。4。可能会注意到,NCCS先前发送给TSTL的TSTP格式应保持不变。必须相应地以规定格式的相关细节。5。在提交测试报告时,将包括与相关子句测试有关的相关清晰屏幕截图/证据
为了更好地了解 Wi-Fi 对蓝牙的影响,Silicon Labs 测量了 100% 占空比 802.11n(MCS3,20 MHz 带宽)阻断器在不同功率水平下传输时的影响,同时接收以足以实现 0.1% BER(接收灵敏度)的功率水平传输的蓝牙 1Mbps 37 字节有效载荷消息。下图显示了同信道、相邻信道和“远”信道的结果。所有 802.11n 和蓝牙功率水平均参考 Silicon Labs EFR32MG21 RF 输入。测试应用程序是使用 Silicon Labs Bluetooth 2.11.0 或更高版本的堆栈开发的,在 EFR32 DUT(被测设备)上运行 soc-dtm 示例应用程序,并使用测试脚本来控制 DUT 和 RF 测试设备。
摘要 — RISC-V 处理器的开源架构为设计人员提供了灵活性,使他们能够为各种应用实现架构。然而,同样的优势也使验证过程变得困难,因为必须验证所有变体。拟议的项目将为扩展的 RISC V 架构创建一个验证环境。RISC-V 支持整数乘法和除法的“M”标准扩展以及控制和状态寄存器指令的“Zicsr”标准扩展。上述 ISA 类将使用基于 RV32I ISA 的 DUT 进行测试,并在 DUT 周围使用 UVM 环境来验证 M 和 Zicsr 功能。M 和 Zicsr 类型 ISA 经过验证,功能覆盖率为 95%。创建的 UVM 框架可以重复用于验证其他指令集架构。
5.2 系统参数状态估计问题分解的影响 5.3 频域中线性系统的输入信号优化 5.3.1 频域中的 Fisher 信息矩阵 5.3.2 信息空间中信息矩阵的表示 5.4 利用凸分析计算最优输入信号 5.4.1 凸分析的应用 5.4.2 谐波输入信号 5.4.3 输入设计的全局最优性 5.5 谐波输入信号的优化 5.5.1 梯度法的应用 5.5.2 谐波输入信号的组合 5.5.3 消除多余的谐波输入信号 5.6 结论 最优输入信号的设计和评估 6.1 时域输入设计 6.1.1 DUT 纵向输入信号的设计 6.1.2 DUT 横向输入信号的设计6.1.3 Doublet、3211、Mehra 和 Schulz 输入信号
近场扫描免疫(NFSI)[1]是一种强大的测量工具,可检测和诊断与电磁(EM)干扰偶联的故障印刷电路板(PCB)[2] [3]或集成电路(IC)[4]。最近的研究表明,如何处理该方法的结果,以估计辐射连续波(CW)干扰的易感性[5] [6]。但是,该方法受到过度测量时间的限制,在工业环境中可能会过时。测量时间取决于表面进行扫描,分析的频率范围和分辨率以及正在测试的设备(DUT)。减少扫描持续时间的一种方法是对扫描位置和利益频率的事先确定,也就是说,DUT在哪里表现出易感性最大值。完成了快速初始测试后,可以将CW模式下的NFSI配置为仅关注这些点和感兴趣的频率并捕获更精确的敏感性图。
会影响接收器灵敏度,从而降低通信系统的性能 [3, 4]。因此,在将 RF 无源元件部署到通信系统之前,确保它们符合 PIM 要求非常重要。当两个或多个 RF 信号在非线性接触 [5] 或非线性材料 [6] 中混合时,就会发生 PIM。如果生成的 PIM 的频率落在接收器的工作频带内,则可能会引起干扰,从而导致信道容量降低并降低通信系统的性能。可以根据 IEC 62037-1 标准 [7] 中的相关测量不确定度 (MU) 来测量 PIM。但是,不确定度预算中没有考虑一些贡献。本文采用两种方法来评估 PIM 水平对载波功率的灵敏度,如下一节所述。接下来的章节将详细介绍用于测量被测设备 (DUT) 的 PIM 的测量设置和计算 PIM MU 的过程。最后,介绍并讨论了 PIM MU 的结果和不确定度预算。 PIM 载波功率灵敏度的计算方法 使用拟合分析模型计算 PIM 灵敏度 开发了几种分析模型 [8] – [11] 来估计 PIM。在 [8] 中,DUT 的非线性被建模为多项式级数。多项式级数的复杂性显著增加
1. 简介 5α-还原酶 (5a-R) 可在细胞内将睾酮转化为双氢睾酮 (DHT)。在成年男性中,DHT 与良性前列腺增生 (BPH)、前列腺癌和雄激素性脱发 (男性型脱发) 有关 [1,2]。5a-R 的两种主要同工酶是:(i) 1 型,主要存在于皮肤和肝脏中;(ii) 2 型,主要存在于男性生殖器和毛囊中。两种 5a-R 同工酶均在前列腺组织中表达 [2]。3 型同工酶的数据有限,但在前列腺基底上皮细胞中表达 [3]。非那雄胺 (FIN) 和度他雄胺 (DUT) 是最常用的 5a-R 抑制剂 (阻断剂)。在体外,度他雄胺是比非那雄胺(2 型 5a-R 抑制剂)更有效的 1 型(45 倍)和 2 型 5a-R(2.5 倍)抑制剂 [1]。文献中已多次证明这两种药物在降低 DHT 水平、减少脱发和前列腺问题方面的有效性 [4]。FIN 被批准用于治疗男性雄激素性脱发,FIN 和 DUT 均可用于治疗 BPH。
前沿人工智能 (AI)/图形/移动处理器、动态随机存取存储器 (DRAM) 器件和异构集成 IC 堆栈都面临着同样的热管理挑战,即被测器件 (DUT) 太热而无法测试。即使在室温晶圆卡盘设置下,移动片上系统 (SoC) 器件结温也可能达到 100°C 至 150°C 之间。对于全晶圆 DRAM 测试,单次着陆测试期间可能施加高达 2,000W 的功率。最近的技术路线图显示散热要求甚至更高,最高可达 3,500W。随着异构集成芯片堆栈的兴起,测试单元热管理变得更加复杂。在测试堆叠有多个芯片的基片时,每个硅片面积的热负荷会增加一个数量级。如果不控制温度,可能会导致探针烧毁、器件损坏和测试结果不准确。除非先测量温度,否则无法控制温度。 ATT-Systems(FormFactor 旗下公司)的低热阻 (LTR) 晶圆夹盘技术在热夹盘上应用了多个温度传感器,以准确检测 DUT 温度并调节散热以达到所需的测试温度。LTR 在生产测试中表现出良好的效果,解决了“温度过高而无法测试”的难题。
1.0 一般说明 PVX-2506 脉冲发生器设计用于对高达 50 伏和 10 安的半导体器件进行脉冲 IV(电流-电压)特性分析。它也非常适合需要高电流、精密电压脉冲的其他应用。半导体器件的 IV 特性是频率和温度的函数。曲线追踪器和其他“DC”测试系统通常会逐步通过一系列栅极电压,并在每个栅极电压下扫描整个测量范围内的漏极电压。该器件在每个点基本上达到热平衡和电子(半导体陷阱)平衡,产生与实际 RF 操作特性不同的测试特性。通过使用 PVX-2506 对器件进行脉冲处理并在脉冲期间进行测量,可以在器件升温之前进行测量。这可以避免与传统“DC”测试相关的热效应,更接近器件在高频下运行时的特性,并且不会激活半导体“陷阱”。 PVX-2506 采用双向 MOSFET 输出级设计,采用 DEI 的 DE 系列快速功率 MOSFET。此设计提供快速上升和下降时间,过冲、下冲和振铃最小,稳定时间快。这种受控电压波形允许被测设备 (DUT) 在几百纳秒内稳定电压,从而允许在设备开始加热之前进行 IV 测量。可以将静态(偏置)电压施加到脉冲发生器,允许 DUT 保持在非零电压,然后在此电压之上或之下脉冲。PVX-2506 需要输入门信号、脉冲 (VHIGH) 和可选静态 (VLOW) 直流电源输入。输出脉冲宽度和频率由输入门信号控制。输出电压幅度由输入 VHIGH 和可选 VLOW 直流电源幅度控制。前面板控制和监视器提供了在脉冲模式下运行或切换到直流模式的灵活性,在该模式下,VHIGH 电源产生的直流电压直接施加到 DUT。提供集成仪器质量电压和电流探头,以方便脉冲数据采集。输出脉冲通过创新的低阻抗电缆发射。该电缆的设计保持了输出脉冲的保真度,而不会引入脉冲失真或振铃,并提供了一种方便的方法来