共同基金的目的是在五年的最低投资期内为股票和固定收益市场提供灵活的管理。尽管在较大的分配限制范围内运行,但可以将共同基金的概况与由65%的股票和35%的公共债券和私人债券组成的分配进行比较,该股票平均在发达市场中曝光,并在发达市场和新兴市场中。共同基金将被积极管理,而无需提及基准指数。投资策略是可行的,是基于在三个支柱周围组织的投资组合管理过程:•根据经理的定罪水平(资产类别,地理领域,部门),在中等/长期的战略资产分配的不同,•由经理的短期管理机构而造成的投资,以征服市场机会,以征服市场的投资,以征收•选择的投资机会,••选择范围的选择。根据我们的说法,随着时间的推移会产生性能。
在设计ECG系统时,主要问题之一是功耗,尤其是用于移动和可穿戴设备。本文提出了DTLC适用于使用具有负面偏置的双尾比较器的低端和高端应用程序,以改善使用Mentor图形建模的ECG信号监测系统。使用180nm CMOS技术的EDA工具集成的电路设计,以0.8V的电源提高了电力消耗,而不会下降汽车的性能。参数(包括功耗和功耗产品(PDP))以20 kHz的时钟频率从1.33μW降低到12.5 PW,而PDP降低到27°C时的0.251 AJ,可以改善功耗(PDP)。这些优化使所提出的比较器非常适合低功率,高性能ECG系统,尤其是在便携式和可穿戴的医疗设备中,在这些设备中,作为资源利用和交付的精度是重要因素。设计为公司的数字过渡提供了一个声音平台。心脏信号监测中的类似物到数字转换器(ADC)作为客户对医疗行业中节能声音元素的需求的增长。通过这种方式,功率释放效率得到提高,并且过多的能耗受到限制。根据准确性要求,拟议的比较器可以视为最适合现代心电图应用程序的比较。
1简介11 1.1一些语义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.2历史里程碑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.3科学哲学注释。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.4一些实际应用。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.5示例说明家庭作业解决方案样式。。。。。。。。。。。。。。。。。24 1.6热力学系统和控制量。。。。。。。。。。。。。。。。。。29 1.7宏观与微观。。。。。。。。。。。。。。。。。。。。。。。。。30 1.8物质的特性和状态。。。。。。。。。。。。。。。。。。。。。。。33 1.9过程和周期。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 1.10基本变量和单位。。。。。。。。。。。。。。。。。。。。。。。。。35 1.11热力学的零定律。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36 1.12次要变量和单元。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3735 1.11热力学的零定律。。。。。。。。。。。。。。。。。。。。。。。。。。36 1.12次要变量和单元。。。。。。。。。。。。。。。。。。。。。。。。。。37
电子邮件:murugeshankalai2610@gmail.com摘要高效的交通管理对于确保在高流量城市地区安全安全旅行至关重要。延误是由人口稠密的地区的拥塞造成的,其流动性高和商业人口会直接或间接影响公众的日常生活。该项目着重于实施动态信号控制系统,该系统利用AI驱动的技术根据实时交通密度调整流量信号正时。使用基于YOLO的对象检测和MOG2移动对象检测算法,该系统从CCTV摄像机处理视频供稿来计算车辆密度并动态优化信号流动。通过计算信号处的密度,可以在优化的时间使用时清除拥塞。该系统减轻延误,尤其是在高峰时段,可确保不需要手动干预的情况下更顺畅的城市运输。关键字:动态流量信号控制,对象检测算法 - Yolo(您只看一次),Mog2(高斯的混合物)
全球对可再生能源的需求不断增长,这加剧了对生物质转化的研究,其中异相催化成为优化生物燃料生产效率和可持续性的关键技术。生物质是一种复杂的有机原料,其催化转化涉及固液和固气界面上复杂的动力学和热力学相互作用。了解这些相互作用对于提高催化剂性能、反应选择性和整体工艺效率至关重要。本研究探讨了生物质转化中异相催化的动力学和热力学建模,重点研究了控制热解、气化、热液液化和生物乙醇合成的催化机制。对 Langmuir-Hinshelwood、Eley-Rideal 和幂律模型等动力学模型进行了评估,以描述反应速率对催化剂表面特性、原料成分和工艺条件的依赖性。此外,热力学模型提供了对反应可行性、能量障碍和相平衡的洞察,这对于优化反应途径至关重要。本文还回顾了计算建模的最新进展,包括密度泛函理论 (DFT)、蒙特卡罗模拟和基于机器学习的预测模型,以了解它们在加速催化剂设计和反应优化方面的作用。动力学和热力学见解的结合使得合理设计具有增强的活性、稳定性和对生物质衍生燃料和化学品的选择性的催化剂成为可能。尽管取得了重大进展,但由于催化剂失活、工艺多变性和能源密集型再生方法,将实验室模型扩展到工业应用仍然存在挑战。未来的研究应侧重于开发稳健的多尺度模型,将实验数据与人工智能驱动的模拟相结合,以推动生物质转化为能源技术的创新。