我的研究项目探讨了 hmx3a 在斑马鱼脊髓发育中的作用。hmx3a 是一个转录因子基因,这意味着它编码的转录因子蛋白能够结合 DNA 的特定区域,并通过促进或阻止 RNA 聚合酶将 DNA 转录成 mRNA 来促进或抑制其表达。之前的实验室研究已经证实,hmx3a 是斑马鱼脊髓中背部 dI2 中间神经元亚群正确分化所必需的。更具体地说,hmx3a 表达的降低或抑制与 dI2 细胞中神经递质的命运从兴奋性转变为抑制性有关。正常(野生型)dI2 细胞通过释放兴奋性/谷氨酸能化学神经递质进行通讯,这会增加接收细胞产生动作电位的可能性。而转换为抑制性神经递质表达(GABA 能或甘氨酸能)则会降低突触后细胞产生动作电位的可能性。由于神经递质表达的改变,我们预测 dI2 细胞不再在神经回路中正常发挥作用,这将对中枢神经系统内的感觉知觉产生重大影响。
由于暴露于压力源而变化的某些基因的表达尚未在大脑中进行详细研究。因此,进行了斑马鱼的压力试验,旨在识别大脑不同区域中相关的基因调节途径。作为此试验中的急性压力源,已经使用了奖励,进食限制和空气暴露。通过主成分分析(PCAS)分析了来自实验性鱼大脑的基因表达数据,从而根据大脑的调节途径对单个基因进行了编译。结果并未表明整个治疗和性别组的相互反应。评估属于大样本量的类似样品结构是否可以根据处理的基因表达模式进行分类,因此数据已被引导并用于构建随机森林模型。这些揭示了分类的高精度,但是发现雌性和雄性斑马鱼的不同基因最大程度地促成了分类算法。这些分析表明,在大多数情况下,少于八个基因对于准确的分类而言是足够的。主要是属于应力轴,同位素调节途径或5-羟色胺能途径的基因对分类模型的结果具有最强的影响。
多年来,通过 CRISPR 技术,斑马鱼、果蝇和秀丽隐杆线虫的定向诱变技术得到了显著改进。通过在体内诱导小的靶向突变,CRISPR 使研究人员能够有效地检查细胞通路。虽然这些突变通常是随机插入或缺失 (indel),但如果 CRISPR 组件设计得当,它们通常会导致靶基因的功能性破坏。但是,当前用于识别 CRISPR 生成的插入/缺失的协议通常需要大量劳动力、耗时或成本高昂。在这里,我们描述了一种直接、高通量的方法,用于通过使用片段分析仪平台来识别突变的存在,该平台允许通过高分辨率毛细管凝胶电泳进行 DNA 片段大小测定。按照该协议,可以快速可靠地识别小的插入/缺失(少至 2 个碱基对),从而可以对新生成的或稳定的突变系进行大规模基因分型。
1 免疫学-疫苗学,传染病和寄生虫病系,动物与健康基础与应用研究(FARAH),列日大学兽医学院,B-4000 列日,比利时 2 斑马鱼发育与疾病模型实验室,GIGA-疾病分子生物学,列日大学,B-4000 列日,比利时 3 MRC-格拉斯哥大学病毒研究中心,格拉斯哥 G61 1QH,英国 4 UMR-I 02 环境应激与水环境生物监测(SEBIO),UFR 精确与自然科学,兰斯香槟阿登大学,CEDEX 2,51687 兰斯,法国 5 香农理工大学生物科学研究所, N37 HD68 阿斯隆,韦斯特米斯郡,爱尔兰 * 通信地址:owen.donohoe@uliege.be (OD);a.vdplasschen@uliege.be (AV);电话:+32-4-366-43-79 (OD);+32-486-45-13-53 (AV) † 这些作者对本文的贡献相同。
塑料,持续有机污染物(POP)和重金属的人为释放可能会影响包括水生生态系统在内的环境。纳米塑料(NP)最近出现为普遍的环境污染物,具有吸附流行的能力并可能引起生物体的压力。在流行音乐中,DDT及其代谢产物是由于持久性的持续性而是ubiq是ubiq的环境污染物。尽管在欧洲停产的DDT使用,但DDT及其代谢产物(主要是P,P'-DDE)仍在鲑鱼水产养殖中使用的饲料中可检测到的水平上发现。我们的研究旨在将NP(50 mg/L聚苯乙烯)和DDE(100μg/L)的个体和联合毒性使用作为模型。我们没有发现单独暴露于NP的斑马鱼幼虫的形态,心脏,呼吸或行为变化。相反,在暴露于DDE和NPS + DDE的斑马鱼幼虫中观察到形态,心脏和呼吸道改变。有趣的是,仅在暴露于NPS + DDE的斑马幼虫中观察到行为变化。这些发现得到了RNA-Seq结果的支持,这表明仅在暴露于NPS + DDE的斑马幼虫中,某些心脏,血管和免疫原性途径被下调。总而言之,我们发现与NP结合使用DDE的毒理学影响增强。
抽象的动物色素模式在行为中起着重要作用,在许多物种中,红色是伴侣选择中个体质量的诚实信号。在Danio鱼类中,有些物种会形成红细胞,含有红色酮心反非的色素细胞,而其他物种,例如斑马鱼(D。Rerio),只有黄色的黄蜂。在这里,我们使用Pearl Danio(D。albolineatus)评估了红细胞的发育起源及其差异机制。我们表明,白化芽孢杆菌的鳍中的红细胞与黄蜂共有一个共同的祖细胞,即使分化后,也可以在细胞命运中保持可塑性。我们进一步确定了将红色颜色赋予红色色彩的主要酮类苯酚,并使用反向遗传学来确定这些细胞分化和维持所需的基因。我们的分析是定义Danio中红色介导的红色色彩发展的机制的第一步,并揭示了与鸟类红色机制的惊人相似之处。