1 国家物理实验室,Teddington TW11 0LW,英国 2 荷兰皇家气象研究所,Utrechtseweg 297, 3731 GA De Bilt,荷兰;folkert.boersma@knmi.nl 3 瓦赫宁根大学,6700 AA Wageningen,荷兰 4 成像组,Mullard 空间科学实验室,伦敦大学学院,空间和气候物理系,Holmbury, St Mary RH5 6NT,英国;j.muller@ucl.ac.uk 5 比利时皇家空间航空研究所(BIRA-IASB),Ringlaan-3-Avenue Circulaire, B-1180 Brussels,比利时;stevenc@aeronomie.be (S.C.);j-c.lambert@aeronomie.be (J.-C.L.); isabelle.desmedt@aeronomie.be (I.D.S.) 6 FastOpt GmbH, Schanzenstraße 36, D-20357 Hamburg, 德国;simon.blessing@fastopt.com (S.B.); ralf.giering@fastopt.com (R.G.) 7 欧洲委员会联合研究中心 (JRC), Via E. Fermi, 2749, 21027 Ispra VA, 意大利;nadine.gobron@ec.europa.eu 8 大气光谱、量子化学和光物理学,布鲁塞尔自由大学,50 avenue F. D. Roosevelt, B-1050 Brussels, 比利时; pfcoheur@ulb.ac.be 9 Laboratoire Atmosphè res, Milieux, Observations Spatiales (LATMOS)/IPSL, boîte 102, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France; maya.george@latmos.ipsl.fr 10 欧洲气象卫星应用组织 (EUMETSAT),Eumetsat Allee 1, D-64295 Darmstadt, 德国; Joerg.Schulz@eumetsat.int 11 CGI,Keats House,The Office Park,Springfield Drive,Leatherhead KT22 7LP,英国; alex.wood@cgi.com * 通讯员
摘要 中深钻孔热能存储 (MD-BTES) 系统是一种有前途的技术,可用于可持续、高效的季节性热能存储和区域供热分配。这些创新系统旨在使用钻孔热交换器 (BHE) 将多余的热能(例如来自可再生能源的热量)存储在地下,并在需要加热或冷却时释放出来。MD-BTES 系统可以在向更可持续的能源供应过渡的过程中发挥关键作用,其开发涵盖从勘探到区域供热网的连接和实施等各个阶段。本文介绍了从该领域的两个项目获得的见解,即 SKEWS(由德国联邦政府资助;编号:03EE4030A)和 PUSH-IT(地平线欧洲资助协议,编号:101096566)项目,以突出它们对推进 MD-BTES 技术实施的贡献。MD-BTES 的勘探阶段包括通过钻孔确定适合储能的地质构造。 SKEWS 是“Saisonaler Kristalliner Erdwärmesondenspeicher”或季节性结晶钻孔热存储的缩写,在这一阶段发挥着重要作用。该项目主要侧重于实施一个具有四个钻孔热交换器的真实规模示范场。第一步包括地球物理勘测、地质测绘和分析,旨在确定具有最经济实惠的中深钻孔储层条件的最佳场址选择。通过采用先进的地球物理技术,SKEWS 项目确定了具有必要地质属性的区域,例如热导率和足够的渗透性,以实现高效的能量存储和回收。此外,SKEWS 还生成了数据集,以评估在城市和近郊地区钻探和安装钻孔系统的可行性和环境影响。目前,现场的钻孔已完成,采用同轴 BHE 设计。 SKEWS 任务包含一个实验性的存储和提取程序,将于 2026 年结束。这种方法使 SKEWS 成为 PUSH-IT 联盟中理想的 BTES 演示站点。PUSH-IT 项目代表“地热储层地下储热试点”,在开发阶段充当领先的研究站点,并解决存储系统与现有区域供热网集成的数值建模和调试的主题方面,特别是在达姆施塔特站点。MD-BTES 与区域供热网的连接代表了研究 MD-BTES 用于城市能源系统的潜力的最后一步。为了说明这一点,将提供一个示例连接场景,并详细说明在达姆施塔特工业大学校园规模上进行技术开发和部署的联合模拟、控制和地下过程建模策略。这两个项目获得的见解和观点对于克服大规模部署相关的技术、经济和监管挑战非常有价值,最终有助于减少温室气体排放并促进可持续的城市能源系统。
外部通讯员: 阿贡国家实验室(美国):D Ayres 布鲁克海文国家实验室(美国):P Yamin 康奈尔大学(美国):D G Cassel DESY 实验室(德国):llka Regel、P Waloschek 费米国家加速器实验室(美国):Judy Jackson GSI 达姆施塔特(德国):G Siegert INFN(意大利):Barbara Gallavotti 北京高能物理研究所(中国):Tongzhou Xu 杰斐逊实验室(美国):Melanie O'Byrne JINR 杜布纳(俄罗斯):B Starchenko KEK 国家实验室(日本):A Maki Lawrence 伯克利实验室(美国):Christine Celata 洛斯阿拉莫斯国家实验室(美国):C Hoffmann NIKHEF 实验室(Pay-Bas):Paul de Jong 新西伯利亚研究所(俄罗斯):S Eidelman 奥赛实验室(法国):Anne-Marie Lutz PSI实验室(瑞士):P-R Kettle 卢瑟福阿普尔顿实验室(英国):Jacky Hutchinson 萨克雷实验室(法国):Elisabeth Locci IHEP,Serpukhov(俄罗斯):Yu Ryabov 斯坦福线性加速器中心(美国):N Calder TRIUMF 实验室(加拿大):M K Craddock
隶属关系1塑料,手和重建手术系,德国雷根斯堡大学医院雷格斯堡2纽约大学兰蒙大学健康医疗中心,纽约,纽约,美国3芝加哥普里茨克大学医学院,芝加哥大学,伊利诺伊州芝加哥大学,伊利诺伊州芝加哥大学,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国4次,美国4次,美国4次,美国4皮肤诊所,美国4层临床。德国达姆施塔特的Klinik 7化学系,汉堡大学化学科学系,德国汉堡大学8号汉堡大学8号塑料,手和重建手术系,德国大学医院,雷格斯堡,雷格斯堡,雷格斯堡,Instituto de dematoologia dematoologia dematoologia dematoologia dematoologia dematologia dematologia Mudem David Azulay,Rio Deien deien deien deien de Janeir,raze de Janeir,raze ibaust weniz,wwebaust wweiz nired niz wee janeir,wwebaust nired,奥地利和Hautarzt Friedenau,柏林,德国,第11个皮肤病学系,伊拉斯mus医疗中心,荷兰鹿特丹,荷兰12号加利福尼亚大学圣地亚哥分校,加利福尼亚州圣地亚哥,加利福尼亚,美国13皮肤病学和激光中心,德国德国德国德国德国兰迪,14 p-Sirnir sirir,Taieriir,Taaiwan,Taiwan of taai fata of taai of taai faceir,tai sirir,taai facept泰国曼谷Mahidol University
P 101固态电池的新样本环境ThereseKjær(Aarhus/DK),Ln Skov(Aarhus/DK),J.Grinderslev(Aarhus/dk),L。Kristensen(Aarhus/dk) ,B。 R.ücüncüoglu(Aalen/de),T。Schubert(Aalen/de),L。TrezecikSilvano(Aalen/de),R。Tripathi(Oberkochen/de),B。Linn (上科亨/德国)、R. Zarnetta (上科亨/德国)、Pinar Kaya (阿伦/德国)、V. Knoblauch (阿伦/德国) P 103 钠固态电池(Na-SSB):层状氧化物和硫化物的故事——它们会和睦相处吗? Neelam G Yadav(柏林/德国)、P. Adelhelm(柏林/德国)P 104 使用超声波技术对固态电池中诱发电极剥离进行无损调查 Mohammad Bahonar(不伦瑞克/德国)、D. Schröder(不伦瑞克/德国)P 105 用于全固态电池研究的三电极装置 Christoffer Karlsson(达姆施塔特/德国)、M. Schöll(达姆施塔特/德国)、M. Drüschler(达姆施塔特/德国)、M. Soans(乌尔姆/德国); D. Bresser(ULM/DE),A。Varzi(ULM/DE),B。Huber(Darmstadt/de)P 106 Cryo-Workflow在子纳米分辨率分辨率Yuqi Yuqi Liu(Düsseldorf/de)上调查Li 7 La 3 Zr 2 O 12 üsseldorf/de),D。Raabe(Düsseldorf/de),B。Gault(Düsseldorf/de)P 107揭示了复合阴极的阻抗Jake Huang(Münster/de),W。Zeier(Münster/de)P 108 Microstratie flocties fote flositate /de),Till Ortmann(Gießen/de),Juri Becker(Gießen/de),Catherine Haslam(Ann Arbor/US),Marcus Rohnke (Giessen/DE), Boris Mogwitz (Giessen/DE), Klaus Peppler (Giessen/DE), Jeff Sakamoto (Santa Barbara/US), Jürgen Janek (Giessen/DE) P 109 Thermal Stability of Li 6 PS 5 Cl Argyrodite Alexander Sedykh (Giessen/DE), M. Grube (Braunschweig/DE), WG Zeier (Münster/DE), J. Janek (Giessen/DE), M. Lepple (Giessen/DE) P 110 CuFeS 2 as a Cathode Active Material in All-Solid-State Batteries Changjiang Bai (Berlin/DE), KA Mazzio (Berlin/DE), and P. Adelhelm (Berlin/DE) P 111 Sulfur Spillover on Carbon Materials and Its Relevance for Metal-Sulfur Solid-State Batteries Roman Healy Corominas (Berlin/DE), F. Piccolo (Berlin/DE), S. Tagliaferri (Berlin/DE), M. Armbrüster (Chemnitz/DE), P. Adelhelm (Berlin/DE) P 112 通过物理气相沉积法开发硫化物基固态电池的锂和硅阳极 Matteo Kaminski(不伦瑞克/德国)、Julian Brokmann(不伦瑞克/德国)、A. Gail(不伦瑞克/德国)、N. Dilger(不伦瑞克/德国)、S. Melzig(不伦瑞克/德国)、S.Zellmer (Braunschweig/DE) P 113 固态电池硫化物基隔膜的致密化 Carina Heck (Braunschweig/DE)、DH Nguyen (Stuttgart/DE)、JBW Wijaya (Stuttgart/DE)、L. Bröcker (Braunschweig/DE)、M. Osenberg (Berlin/DE)、A. Diener (Braunschweig/DE)、I. Manke (Berlin/DE)、P. Michalowski (Braunschweig/DE)、C.-P. Klages(Braunschweig/de),B。Lotsch(Stuttgart/de),A。Kwade(Braunschweig/de)P 114基于所有基于全固定的水液钠钠电池Jan Thomas(Bremen/de),Bremen/Bremen/debrem potter nik liph in nik liith liph liph liph limith(bremen niq a schweensel) IES量较低,通过利用多孔碳主机StephanieMörseburg(Dresden/de),T。Boenke(Dresden/de),K。Henze(Dresden/de),K。Schutjajew(Dresden/de) F. Hippauf(Dresden/de),S.Dörfler(Dresden/de),T。Abendroth (德累斯顿/德国)、H. Althues (德累斯顿/德国)、M. Oschatz (德累斯顿/德国)、E. Brunner (德累斯顿/德国)、J. Janek (吉森/德国)、S. Kaskel (德累斯顿/德国) P 116 金属硫化物 (TiS 4 /VS 4 ) 与硫化物固态电解质在高能应用方面的摩擦化学 Pascal Seete (德累斯顿/德国)、Felix Hippauf (德累斯顿/德国)、Susanne Dörfler (德累斯顿/德国)、Holger Althues (德累斯顿/德国)、Niklas Abke (明斯特/德国)、Kentaro Kuratani、Tomonari Takeuchi、Hikari Sakaebe、Stefan Kaskela (德累斯顿/德国)
获得了与上述基因表达相对应的(德国Sigma Aldrich)。理想稀释比和检索缓冲液在染色之前确定(ITGA-2:1:100,MMP-1:1:1:1:1:1:1:1:1:1:250)。简短地,将组织切片用二甲苯脱蜡,并随着酒精浓度降低而补液。使用柠檬酸盐缓冲液(10 mmol/L,pH 6.0)在微波炉(600 W)中进行热诱导的表位检索后,在室温下使用载玻片,用针对ITGA-2,TEK,TEK,TEK,MMP-1的主要抗体进行1小时。Ultravision LP检测系统(Lab Vision Corporation,Fremont,California)用于根据制造商的建议检测抗体结合。抗体结合位点通过添加3-3-二氨基苯胺颜色褐色。最后,进行了用苏木精三世(Merck,Darmstadt,Germany)对Tis-Sue样品的抗染色。所有载玻片均分配给标记表达式的四类类别之一:0 =负; 1 =弱:在<30%的细胞中染色; 2 =中度:30%至60%的细胞染色;和3:超过60%的细胞中的染色强。采用核心污渍的平均值来确定染色强度。阳性对照是根据制造商的协议进行的。使用Olympus BH-2显微镜(Olympus America,Melville,New York,New York)分析样品。
上午 10 点 15 分 人工智能应用和欧盟人工智能法案在安全、边境和移民领域——欧盟委员会的观点 马丁·于贝尔霍尔 (Martin Übelhör),欧盟委员会(移民和内政总司)创新与安全研究部副主任,布鲁塞尔 上午 10 点 45 分 深入了解人工智能法规的技术合规要求。 Sophie Tschorr、Katharina Kofend、Pierre Springer、慕尼黑安全部门信息技术中央局 (ZITiS) 上午 11:00 咖啡休息 上午 11:30 根据欧盟人工智能法规利用人工智能打击洗钱 Lena Leffer、MaLeFiz 项目 (用于有效识别可疑金融交易的机器学习) 研究助理、哈雷/萨勒大学 中午 12:00 从 IT 角度利用人工智能打击洗钱 Prof. Dr. Martin Steinebach,媒体安全和 IT 取证部门主管 弗劳恩霍夫安全信息技术研究所 (SIT),达姆施塔特 12.30 讨论主持人:KHKin Susanne Schmidt,瑞士高级钟表博览会警察管理人员
Gerhard Fettweis 教授 – 德累斯顿工业大学 Holger Boche 教授 – 慕尼黑工业大学 Thomas Wiegand 教授 – 柏林工业大学和弗劳恩霍夫海因里希赫兹研究所 Erich Zielinski 教授 – 阿尔卡特朗讯通信研究基金会 Hans 教授Schotten – DFKI 和凯泽斯劳滕大学 Peter Merz – 诺基亚解决方案和网络管理国际有限公司 Sandra Hirche 教授 – 慕尼黑工业大学 Dr. Andreas Festag – 德累斯顿工业大学博士Walter Häffner – 沃达丰有限公司 Dr. Michael Meyer – 爱立信有限公司 Eckehard Steinbach 教授 – 慕尼黑工业大学 Rolf Kraemer 教授 – IHP,高性能微电子创新 Ralf Steinmetz 教授 – 达姆施塔特工业大学 Dr. Frank Hofmann – 罗伯特博世有限公司 Peter Eisert 教授 – 弗劳恩霍夫海因里希赫兹研究所 Dr. Reinhard Scholl – 国际电信联盟 Frank Ellinger 教授 – 德累斯顿工业大学 Dr. Erik Weiß – 德国电信有限公司 Ines Riedel – 德累斯顿工业大学
→HFM Hanns Eisler Berlin,电子音乐音乐工作室(Steam)→UDK Berlin,Electro -Oustrotic Composition,Sound Art and Sound Research(Uni.k)的工作室→HKB Bern,音响艺术→HFK Bremen,Bremen,for Electro -atro -atro -atro -atro -atro -ocustrousion music→音乐音乐→Secormator Music→ghune g。 Elettronica&Tecnici del Suono→HS Darmstadt,Soundscape and Environmental Media-LAB(SEM)→HFM Carl Maria von Weber Dresden,Hybrid Music Lab→Folkwang UDK Essen,计算机音乐和电子测量学院(ICEM) ACOUSTICS(SELMA)→HFM FREIBURG,电子音乐工作室→Kug Graz,电子音乐和声学研究所(IEM)→HFMT Hamburg,多媒体组成→HMTM Hannover,HANNOVER,FMSBW,FMSBW-新音乐学院的电子工作室HFM Karlsruhe, Sam · Computer Studio and IMWI Institute for Musicism and Musicology → HfMT Cologne, Studio for Electronic Music → KHM Cologne, Sound of the Sound Group Exmedia → HMT Leipzig, Electro-Acoustic Studio → MH Lübeck, Electronic Studio → HfM Mainz, course of studies → University Mozarteum Salzburg,电子音乐工作室(SEM)→Hauteécoledes Arts du Rhin(Hear),Strasbourg→HMDK Stuttgart,电子音乐工作室(STEM)→Hague Sonology Institute→HFM Trossingen,HFM Trossingen,音乐设计→HFM Franz lisztisstissche Music (接缝)→Zhdk Zurich,计算机音乐与声音技术研究所(ICST)
指导委员会 P. Amler | 维也纳(奥地利) M. Aufl ege r 教授 | 因斯布鲁克(奥地利) TR Bajracharya 教授 | 加德满都(NPL) M. Barnes | 塔尔萨(美国) MA dos Santos 教授 | 里约(巴西) W. Gawlik 教授 | 维也纳(奥地利) Ch. Gentner 博士 | 伯尔(瑞士) O. Haupt | 法兰克福(德国) St. Heimerl 教授 | 斯图加特(德国) 圣科尔布 | 巴登(瑞士) J. Koutnik 博士 | 海登海姆(德国) S. Liu 教授 | 北京(中国) K. Miyagawa 教授 | 东京(日本) S. Muntean 博士 | 蒂米什瓦拉(罗马尼亚) Ch. Nicolet 博士 | 洛桑(瑞士) H. Nilsson 教授 | 哥德堡(瑞典) G. Pavesi 教授 |帕多瓦 (ITA) P. Pelz 教授 |达姆施塔特(德国)J. Prost 博士 | Eisenstadt(奥地利)S. Riedelbauch 教授 |斯图加特(德国)P. Rudolf 教授 |布尔诺 (CZE) R. Schiling 教授 |慕尼黑(德国)K. Schneider 博士 | Laufenburg(德国)R. Schürhuber 教授 |格拉茨(奥地利)T. Staubli 教授 |卢塞恩 (CHE) R. Willinger 教授 |维也纳(奥地利)G. Zenz 教授 |格拉茨 (奥地利)
