Aqua提供了一个框架,用于访问,处理和分析大量气候数据•使数据访问简单(两行代码以获取Dask启用Xarray)•处理所有技术性(处理所有技术性(网格权重,FDB请求,不同的可变名称和不同名称和单元,eCodes,ecodes verties))。
摘要。我们探讨了采用云代表工具和原理,以锻造灵活和可扩展的基础架构,旨在支持分析框架 - 在高光度大型强调撞机(HL-LHC)时代为Atlas实验开发的框架。该项目最终建立了一个联合平台,整合了来自各种提供商的Kubernetes群集,例如Tier-2中心,第3层中心,以及来自国家科学基金会项目的Iris-Hep可伸缩系统实验室。一个统一的接口进行了简化容器化应用程序的管理和缩放。通过与分析效率集成,使Jupyter / Binder笔记本电脑和DASK工人的溢出到TIER-2资源来实现增强的系统可伸缩性。我们调查了“拉伸”(在大型网络)集群模式的灵活部署方案,包括集中式的“灯光管理”模型,Kubernetes服务的远程管理以及完全自主的站点管理的群集方法,以适应各种操作和安全要求。该平台在多群集演示器中展示了其e ffi cacy,以使用Co ff ea,servicex,uproot和dask以及rdataframe等工具进行低延迟分析和高级工作流程,并说明了其支持各种处理框架的能力。该项目还为Atlas软件和计算登机事件提供了强大的用户培训基础架构。
我是博洛尼亚大学的博士后研究员,拥有电子、电信和信息技术工程博士学位。我的研究重点是高性能计算系统的设计、分析和管理。我在 MLOps、机器学习、深度学习、Python、PyTorch、PySpark、Dask、TensorFlow、预测模型、大数据、并行编程和统计数据分析方面拥有六年的行业经验和技能。我热衷于利用我的专业知识推动创新并提高我所在领域的知识。
因此,下一个提到的结果遵循。基于通过实验测量左手和右手拇指运动过程中大脑电活动获得的EEG信号,我们获得了用于训练集合随机森林算法的输入和输出数据,该算法是通过Scikit-Learn库的软件工具实现的。使用Joblib库的软件工具,可以通过将N_JOBS HyperParameter的值设置为-1时在物理内核和计算机流程上训练集合的随机森林算法时并行化计算。基于DASK库的软件工具,将并行计算分布在群集计算机系统的物理核心及其流中,这使得组织高性能计算以训练集合随机森林算法。结果,根据质量指标:准确性,ROC_AUC和F1评估了创建算法,软件 - 硬件计算管道的质量。所有这些一起制作