微镜◼1x4,1x8至1xn镜头阵列,具有完美对齐的镜头◼单元<0.6 x 0.6 x 0.6 x 1mmm³◼准入和重新聚焦◼大型尺寸和长距离
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。
我们在光刻和添加剂制造之间的接口上提供3D微加工解决方案。这将导致对齐的3D打印功能,例如在芯片上,在纤维上,井中和具有光学质量表面的微流体通道中。
以强大的价值为基础,Datacom已成为该地区领先的当地技术业务之一。我们在澳大利亚和新西兰工作,通过将可以想象的现实变成现实来改变人们的生活。DATACOM通过跨越技术,运营,数字服务和产品的各种服务和解决方案为客户提供支持,这都是以强大的行业经验和洞察力为基础的。Datacom在澳大利亚,新西兰和亚洲的6100多名人员中工作,真正的能力是世界一流的,并且是自豪的本地人。
本报告包含与未来事件和预期有关的前瞻性陈述,包括我们对以下方面的预期:(i) 我们未来的财务和运营业绩;(ii) 我们服务的通信市场(包括数据通信和电信)的增长;(iii) 发展中经济体的 5G 增长和 6G 的出现;(iv) 数据中心按细分市场划分的资本支出以及前 15 大 ICP 与 CSP 的年度基础设施支出;(v) 数据中心人工智能和机器学习(“AI/ML”)的增长及其长期颠覆潜力;(vi) 数据通信市场,包括 100G、200G、400G、800G、1.6T 和 3.2T,以及 800G/1.6T 的主导持续时间;(vii) 云端、电信和企业领域的年度新增带宽以及我们最大的电信机会——收发器;(viii) 分解系统的增长;以及 (ix) 数据中心光电路交换的出货量以及我们在该领域的机遇定位; (x) 人工智能收发器的出货量;(xi) 我们在 800G 和 1.6T 数据通信收发器领域的持续领导地位;(xii) 人工智能的兴起;(xiii) 800G、1.6T 和 3.2T 收发器的生产;(xiiii) 我们的数据中心光交叉连接 TM 为数据中心带来光电路交换机的机会;以及 (xiv) 800G 将成为我们收入的一半并在未来五年内超过市场增长,这些都基于某些假设和意外事件。前瞻性陈述根据 1995 年美国私人证券诉讼改革法的安全港规定做出,与公司未来的业绩有关。本投资者演示稿中的前瞻性陈述涉及风险和不确定性,可能导致实际结果、业绩或趋势与本文或之前披露的前瞻性陈述中表达的结果、业绩或趋势存在重大差异。
澳大利亚科技领袖调查是 Datacom 和澳大利亚科技委员会联合发布的一份报告,旨在了解 2024 年将占主导地位的顶级科技趋势。我们邀请了澳大利亚的一些顶级科技领袖分享他们对未来一年的优先事项和期望的看法。他们的回答提供了宝贵的见解,让我们了解预计将主导这一快速增长的重要经济领域的关键机遇和挑战。
垂直腔面发射激光器 (VCSEL) 是众多工业和消费产品中非常重要的光源。主要应用领域是数据通信和传感。数据通信行业使用基于 GaAs 的 VCSEL 进行光学互连,这是一种短距离光纤通信链路,用于在数据中心和超级计算机内的单元之间以高速率传输大量数据。在传感领域,VCSEL 广泛应用于消费产品,如智能手机(例如面部识别和相机自动对焦)、计算机鼠标和汽车(例如手势识别和自动驾驶的激光雷达)。在这项工作中,我们开发了一种基于物理的先进数据通信 VCSEL 等效电路模型。该模型有助于与驱动器和接收器 IC 进行协同设计和协同优化,从而实现具有带宽受限 VCSEL 和光电二极管的更高数据速率收发器。该模型还有助于理解 VCSEL 内的每个物理过程如何影响 VCSEL 的静态和动态性能。它已被用于研究载流子传输和捕获对 VCSEL 动力学的影响。这项工作还包括在氮化硅光子集成电路 (PIC) 上微转移印刷基于 GaAs 的单模 VCSEL。这种 PIC 越来越多地用于例如紧凑且功能强大的生物光子传感器。VCSEL 的转移印刷使 PIC 上集成节能光源成为可能。底部发射的 VCSEL 印刷在 PIC 上的光栅耦合器上方,并使用光反馈来控制偏振,以便有效耦合到氮化硅波导。生物传感应用所需的波长调谐是通过直流调制实现的。
∗ 本文吸收并替换了之前以“消费准入和经济活动的空间集中:来自智能手机数据的证据”为标题发表的材料。感谢 Gabriel Ahlfeldt、Milena Almagro、Daniel Sturm、Gabriel Kreindler、Tobias Salz 以及会议和研讨会参与者的有益评论。我们感谢 Takeshi Fukasawa、Peter Defferebach 和 Yun-Ting Yeh 提供的出色研究协助。适用通常的免责声明。 “Konzatsu-Tokei (R)”数据是指在用户同意的情况下,通过 NTT DOCOMO, INC 提供的应用程序(包括地图应用程序 Docomo Chizu NAVI)从手机发送的个人位置信息构建的人流数据。这些数据被集体和统计处理,以隐藏私人信息。原始位置数据是每五分钟(最少)发送一次的 GPS 数据(纬度、经度),不包括指定个人的信息。本文件中提供的所有表格和图表的版权均属于 ZENRIN DataCom CO., LTD。我们还要感谢一桥大学的 Yaichi Aoshima 与 ZENRIN DataCom Co.,. LTD. 协调该项目;村田基金会、平和中岛基金会、鹿岛基金会、大林基金会、JSPS KAKENHI(拨款编号 21H00703)和一桥大学的资金支持;东京大学 CSIS 的联合研究支持(项目编号 954)。† 经济学系,270 Bay State Road,波士顿,马萨诸塞州 02215。电话:1-617-353-5682。电子邮件:miyauchi@bu.edu。‡ 创新研究所,2-1 Naka,国立,东京 186-8603,日本。电话:81-42-580-8417。电子邮件:nakajima.kentaro@gmail.com § 经济学系和 SPIA,JRR 大楼,普林斯顿,新泽西州 08544。电话:1-609-258-4016。电子邮件:red-dings@princeton.edu。