13.1 地心地球固定笛卡尔坐标系 (ECEF 或 ECR) .......................................................................... 65 13.2 椭球地理坐标系 .............................................................................................................. 65 13.3 局部地心坐标系 (LTS) ............................................................................................................. 65 13.4 地理坐标系和地心坐标系之间的转换 ............................................................................. 66 13.5 地心 (ECR) 坐标系和局部地心 (LTS) 坐标系之间的转换 .................................. 67 13.6 大地基准 ............................................................................................................................. 67 13.7 地图投影 ............................................................................................................................. 68 13.8 大地水准面和椭球高程 ............................................................................................................. 68 13.9 准惯性坐标系 (ECI 地心惯性) ............................................................................................. 69
ARC/INFO - ESRI 开发的地理信息系统软件 D - 日 EPA - 美国环境保护署 ESRI - 环境系统研究所,Inc. FGDC - 联邦地理数据委员会 FIPS - 联邦信息处理标准 GIS - 地理信息系统 GW - 地下水 ITFM - 美国水质监测跨部门工作组 LAB - 实验室 LP - 液化石油 M - 分钟或米 MAX - 最大值 MIN - 最小值 MSDE - EPA 地下水质量最小数据元素集 N - 数字 NAD - 北美基准(水平) NGVD - 国家大地测量垂直基准 NIST - 国家标准与技术研究所(前身为国家标准局) NRCS - 国家资源保护局(前身为美国土壤保护局) NWIS - 美国地质调查局国家水资源信息系统 OFR - 美国地质调查局公开文件报告 P - 主要 PO - 邮局 PUB - 出版物 PVC -聚氯乙烯 QA/QC - 质量保证/质量控制 S - 二级 T - 三级 TDH - 德克萨斯州卫生部 TECH - 技术 TNRCC - 德克萨斯州自然资源保护委员会 TWC - 德克萨斯州水资源委员会(现为 TNRCC 的一部分) TWDB - 德克萨斯州水资源开发委员会 UM - 德克萨斯州水资源开发委员会用户手册 US - 美国 USGS - 美国地质调查局 USPS - 美国邮政服务 VAP - 脆弱性评估计划
∂E(t)κe(t)d H 1表示E(t)曲率的平均值(t)。在物理文献中已经提出了这种类型的进化,作为使现象的模型[31,32]。像Mullins-sekerka流一样,集合E(t)的面积沿流量保存,周长不侵扰。曲率流的另一个重要特征是,它可以正式视为周长的L 2-级别流。通常,对(1.1)和(1.2)的平滑解决方案可能会在有限的时间内产生奇异性(例如,请参见[10,10,26,27])。利用所考虑的两个流的梯度流结构,可以通过最小化移动方案(在[3,25]中引入此设置),将弱解定义为(1.1)和(1.2)。此方案定义连续流的离散时间近似,通常称为离散流,具体取决于时间参数h。l 1-限速点为离散流的h→0称为平流,因此,在每次t∈[0,∞)时定义了集合e(t)的家族e(t)。在构建了这个全球范围的弱解决方案后,研究其渐近学是一个自然的问题。关于这些几何流量的解决方案的渐近行为有广泛的文献。一方面,在初始基准的各种几何假设下,一个人能够显示出(1.1)或(1.2)的平滑解决方案的全球及时存在,并表征其渐近行为。关于Mullins-Sekerka流,我们引用了[1,6,11,14],而某些对体积的平均曲率流量的参考为[4、5、5、12、9、34]。另外,人们可以直接研究离散的流量或流量,鉴于最近对所考虑的流量的弱唯一性的结果,这种观点已经获得了显着的兴趣。特别是,这些结果表明,只要存在(1.1)或(1.2)的经典解决方案,任何流动的流量就与之重合。在[13,16]中的(1.1)(在二维中)和[17]中的(1.2)中已证明这一点,在初始数据上的某些规律性假设下,另请参见[23],对于弱的唯一性,对于弱的唯一性结果,导致体积预状的弱弱概念的弱含量是平均平均曲率曲率。在平均曲率流(1.2)的欧几里得设置r 2和r 3中的情况已被很好地理解。第一个结果涉及融合向浮游向球的翻译的收敛,如[21]在n = 2,3。后来,由于具有尖锐指数的Alexandrov定理的新颖定量版本,在[29]中,作者证明了离散流向球,指数速率的收敛,没有其他翻译。随后,他们设法将这项研究扩展到[20,19]中更具挑战性的浮动案例。另请参见[22],有关平面各向异性情况的类似结果。在[20,19]中再次包含t 2中(1.1)的流量溶液的结果,假设初始基准e 0具有固定的阈值。在t 2中,这构成了初始基准e 0满意p(e 0)<2。这个问题至关重要。我们将重点放在平面,定期设置t 2上。在定期设置T N的确,由于流量不会增加周长,因此流量的唯一可能的限制点是球的工会,因此作者可以实质上应用它们在R 2中获得的稳定性结果而不会发生太大变化。
• true north point, or relationship to true north • Scale, generally 1:100 or 1:200 • Position of all existing structures, with floor level & ridge height of main building • Position of existing structures on adjoining land within 3 metres of the boundary, including description, street number, floor level, ridge height, and window levels & locations in the walls closest to the side boundaries • Levels – spot levels & existing contours related to Australian Height Datum (AHD) with bench mark details和所示的水平来源•树木 - 精确的位置,躯干直径(如果大于200mm),高度,差异和物种(如果已知) - 在主题现场以及现场边界3米以内的毗邻土地•现场和理事会步行区域内所有可见的服务,包括雨水坑和雨水坑和雨水坑,水位,水液,下水道,telstra pits等<<<<<<<<<<•具体路径,车辆横梁,遏制位置具有遏制水平的顶部以及遏制插座•具有尺寸的标题边界•所有现有地役权的位置和类型以及包括党墙和普通墙的所有现有地役权和权利•当前的文献证据(第88B节或交易)(88b仪器或交易)与在
人事表 一般个人信息: ________________________________________________________________________________________________ 姓名 ________________________________________________________________________________________________ 街道和门牌号、邮政编码和居住地/负责区军事招募办公室 ________________________________________________________________________________________________ 出生日期(或 PK,如果有) 可用电话(私人/官方) 学历: ________________________________________________________________________________________________ 最后的学校毕业证书/日期 ________________________________________________________________________________________________ 职业培训(从 – 到) ___________________________________________________________________________________________________________ 学习/学习重点(从 – 到) ___________________________________________________________________________________________________________ 学位资格其他学位/头衔 ___________________________________________________________________________________________________________ 外语技能 职业:当前工作地点 受雇为 专业活动的描述 – 重点 –(如果适用)。(作为附录附上):其他活动: _________________________________________________________ __ ____________________________________ 在组织、协会或俱乐部中的活动 ______________________________________________________________________________________________________________________ 公共办公室
在当今的商业环境中,产品种类和定制化的趋势从未间断。由于这种发展,需要敏捷和可重构的生产系统来应对各种产品和产品系列。为了设计和优化生产系统以及选择最佳产品匹配,需要产品分析方法。事实上,大多数已知方法旨在从物理层面分析产品或一个产品系列。然而,不同的产品系列在组件数量和性质方面可能存在很大差异。这一事实阻碍了对生产系统进行有效比较和选择合适的产品系列组合。提出了一种新方法来根据现有产品的功能和物理架构对其进行分析。目的是将这些产品聚类为新的面向装配的产品系列,以优化现有装配线并创建未来的可重构装配系统。基于 Datum Flow Chain,分析产品的物理结构。识别功能子组件,并执行功能分析。此外,输出混合功能和物理架构图 (HyFPAG),通过为生产系统规划人员和产品设计师提供设计支持,描述产品系列之间的相似性。使用指甲刀的说明性示例来解释所提出的方法。然后对蒂森克虏伯 Presta France 的两个转向柱产品系列进行工业案例研究,以对所提出的方法进行首次工业评估。© 2017 作者。由 Elsevier B.V. 出版。同行评审由 2018 年第 28 届 CIRP 设计会议科学委员会负责。
备注:1. 在 25 海里处可能无法实现航向道覆盖。3000 英尺以下 C/L 的 R 为 8 度 2. MSSR - 授予“受限”状态,不得在 65 海里以外使用。3. TACAN:机组人员在 164 度径向上可能会遇到方位摆动。ATC 没有 TACAN 可用性的视觉指示器,因此机组人员可自行决定使用。当 ATC 被告知不能使用 TACAN 时,将发布 NOTAM。4. ILS:请注意,ILS RDH(参考基准高度)设置为 46 英尺,与 ICAO 建议的 15 米(50 英尺)不一致,允许的公差为正 3 米(10 英尺),如英国 Mil Gen 1.7 中所述。5. 航向道和 DME 识别不同步。
3.1 PAN 边界覆盖约 72.51 公顷。该场地位于瑟索西北约 9.2 公里处,前 Dounreay 核设施东北约 3.2 公里处,拟建场地位于 Forss 商业和技术园区边界内。场地内现有 6 台风力涡轮机。场地大致平坦,最高点位于南部,比陆地测量基准面 (AOD) 高出约 52 米。场地内有两条水道。一条位于东北边界,流入北海。第二条位于场地西侧,是一条短小的溪流,流入沿西部边界延伸的农田排水渠。
美国工程历史纪录 太空运输系统,航天飞机运载机(太空运输系统,N905NA 和 N911NA)HAER 编号 TX-116-L 位置:林登·约翰逊航天中心 2101 NASA Parkway Houston Harris County Texas 不使用时,航天飞机运载机 (SCA) N905NA 和 N911NA(以下分别称为 NASA 905 和 NASA 911)由美国国家航空航天局 (NASA) 德莱顿飞行研究中心 (DFRC) 维护,该中心位于加利福尼亚州爱德华兹空军基地 (AFB),位于北纬 34.949167,经度:-117.885000。这些坐标代表 DFRC 的 A 区,即飞机停放的位置;它们是在 2012 年 11 月 25 日通过 Google Earth™ 获得的。坐标基准为北美基准 1983。建造日期:NASA 905 最初建造于 1970 年;1976 年改装为 SCA。NASA 911 最初建造于 1973 年;1988 年改装为 SCA。建造者:NASA 905 和 NASA 911 分别由波音公司 (Boeing) 建造,编号为 747-123 和 747-SR-46。随后波音公司对每架飞机都进行了改装,用作 SCA。原始所有者和用途:在 1974 年 7 月被 NASA 收购之前,NASA 905 由美国航空公司拥有并作为商用喷气式客机运营。在 1988 年 4 月被 NASA 收购之前,NASA 911 由日本航空公司拥有并作为商用喷气式客机运营。现任主人:NASA 905 和 NASA 911 均归位于德克萨斯州休斯顿的 NASA 林登·约翰逊航天中心 (JSC) 所有。意义:NASA 的航天飞机运载机 N905NA 和 N911NA 在美国航天飞机计划(约 1969-2011 年)中具有重要意义。这两架波音 747“巨型喷气式飞机”经过改装,用于运输新的航天飞机