Ashis Debnath是纺织品设计系的副教授,目前是加尔各答校园的纺织品设计中心协调员。他是新德里国家时尚技术学院的纺织品设计毕业生。对设计的热情使他加入了2000年的NIFT,在加尔各答国家时装技术学院。他最初在德里的纺织出口行业工作了大约三年,在那里他的工作职责包括针对各种海外客户的新设计以及出口组织的整体设计工作室管理。后来,他加入了NIFT,在过去的20年中一直是院士。他专门研究设计,纺织品,尤其是编织纺织品。在美国国家时装技术研究所(National Fashion Technology)中,他以前曾在过去几年中承担过几次学术和行政职责。此外,他还代表国家时装技术研究所与几种项目制定和执行相关联。
印度目前约有70%的能源混合物包括煤炭,可再生能源(RE)来源的发电增加正在影响电力系统的健康状况。我们通过资产利用率,成本和加速RE加入印度电力系统造成的社会中断的横断面调查了这种影响。我们还使用文献计量分析为电力系统提供了挑战图。审查驱动的解释学家的结果表明,增加的重新生成正在推动燃煤电厂在低载荷条件下运行,从而导致工厂的磨损增强,因为它们不适合柔性操作。它大大增加了棕地植物的运营和维护成本。虽然越来越多的跨境电力贸易范围,但现有的监管机制却带来了严重的实施挑战。由于从煤炭经济转变而引起的社会破坏说明了印度电力系统政治经济学的整体观点,该观点可能会导致大规模冲突并以前所未有的规模破坏国民经济。我们的研究对电力草案(修订)第2020号法案概述的政策含义包括范围范围,该范围是通过更好的财务支持机制来支持煤炭工厂的灵活运营的社会技术框架。专注于清理燃煤电厂的关闭,并促进对电池存储技术和跨境电力贸易的投资,因为RE和常规燃料达到市场均等。参考详细信息
Linda Sasset 1*,Marek M. Drozdz 1*,Andrew D. Cameron 1,Delcora A. Campbell 1,Debnath Maji 1,Xin Yao 1,Carleigh Sussman 1,Andy T. T. T. T. T. T. T. T. T. T. T. T.
通过计算流式细胞仪的流动细胞来评估免疫标记,我们发现源自脂肪组织的中型组织干细胞显示出相对较好的表面烙印。具有烙印CD90,CD73,CD105的正比率分别为99.85%,99.34%和97.98%。这些表面标记的正比率往往高于Tanya Debnath的研究(CD90 98%,CD73 99%)。9的负标记,以2.06%的速度获得。 当负面制造商计算出CD34/45 0.2-2.5%,而HLADR为2.2%时,该指数往往与Tanya Debnath的研究相似。 9根据国际细胞治疗协会的2006年法规,中等干细胞必须显示某些细胞表面标志,例如CD73,CD90和CD105,并且不显示其他标志,包括表面分子CD45,CD34,CD14,CD14或CD11b,CD11b,CD79 Alpha或CD19和CD19和CD19和HLA-DR。 11这是胡椒9的负标记,以2.06%的速度获得。当负面制造商计算出CD34/45 0.2-2.5%,而HLADR为2.2%时,该指数往往与Tanya Debnath的研究相似。9根据国际细胞治疗协会的2006年法规,中等干细胞必须显示某些细胞表面标志,例如CD73,CD90和CD105,并且不显示其他标志,包括表面分子CD45,CD34,CD14,CD14或CD11b,CD11b,CD79 Alpha或CD19和CD19和CD19和HLA-DR。 11这是胡椒
我在东北空间应用中心 (NESAC) 的实习机会是一次学习和职业发展的绝佳机会。因此,我认为自己是一个非常幸运的人,因为我有机会成为其中的一员。我也很感激有机会结识这么多优秀的人、科学家和专业人士,他们带领我度过了这段实习期。铭记前情,我借此机会向 NESAC 主任表示最深切的谢意和特别的感谢,尽管他工作非常繁忙,但他还是抽出时间听我讲课,并允许我在他们尊敬的组织开展我的项目。我必须向我的项目指导、NESAC 的科学家/工程师“SC” Anjan Debnath 爵士表示最深切的谢意。从提出主题到提供材料撰写本报告,Anjan 先生都提供了毫无保留的帮助和指导,并引导我一步一步完成我的项目。我要向所有为我提供完成本报告机会的人表示最深切的谢意。此外,我还要感谢 NESAC 工作人员发挥的关键作用,他们允许我使用所有必要的设备和必要的材料来完成任务。我认为这次机会是我职业发展的一个重要里程碑。我将努力以最佳方式运用所学技能和知识,并努力在未来加以培养。 ADITYA GAYAN UDIPTA BORDOLOI NIT Silchar NIT Silchar
Ma S*、Skarica M*、Li Q、Xu C、Risgaard RD、Tebbenkamp ATN、Mato-Blanco X、Kovner R、Krsnik Z、De Martin X、Luria V、Marti-Perez X、Liang D、Karger A、Schmidt DK、Gomez-Sanchez Z、Qi C、Gobeske KT、Pochareddy S、Debnath A、Hottman CJ、Spurrier J、Teo L、Boghdadi AG、Homman-Ludiye J、Ely JJ、Daadi EW、Mi D、Daadi M、Marin O、Hof PR、Rasin MR、Bourne J、Sherwood CC、Santpere G、Girgenti MJ、Strittmatter SM、Sousa AMM、Sestan N. 灵长类背外侧前额皮质的分子和细胞进化。科学2022; doi: 10.1126/science.abo7257。 PMID:36007006 Hunt JFV、Li M、Risgaard RD、Ananiev GE、Wildman S、Zhang F、Bugni TS、Zhao X、Bhattacharya A。高通量小分子筛选用于重新激活脆性 X 综合征人类神经细胞中的 FMR1。細胞。 2022; 11(1):6 doi: 10.3390/cells11010069。 PMID:35011630 Men Y、Ye L、Risgaard RD、Promes V、Zhao X、Paukert M、Yang Y。星形胶质细胞 FMRP 缺乏细胞自主上调 miR-128 并破坏发育星形胶质细胞 mGluR5 信号传导。国家科学院院刊2020 年; doi:10.1073/pnas.2014080117。 PMID:32958647 Li M、Shin J、Risgaard RD、Parries M、Wang J、Chasman D、Liu S、Roy S、Bhattacharyya A、Zhao X。识别人类神经发育中 FMR1 调节的分子网络。基因组研究。 2020 年; 30(3): 361-374。 doi:10.1101/gr.251405.119。 PMID: 32179589
我们的编辑团队 职位 姓名 地址 主编 Ashish Khandelwal Flat No 594, Krishi Kunj, Inderpuri, New Delhi 110012,电子邮件:ashishkhandelwal@iari.res.in 高级编辑 Kuleshwar Sahu Room No 23, Hemant Hostel, IARI, PUSA Campus, New Delhi 110012,电子邮件:kuleshwar_10651@iari.res.in Sudhir Kumar Jha 科学家,植物生物技术部,Room No. 4, Block A, ICAR-IIPR, Kalyanpur, Kanpur 208024,电子邮件:sudhir.kumar7@icar.gov.in Sonica Priyadarshini 房间号。 121,Varsha 女生宿舍,ICAR-IARI Pusa 校区,新德里 - 110012,电子邮箱:sonicapriyadarshini@gmail.com Dr R Vinoth 教学助理(PBG),农业学院,泰米尔纳德邦农业大学,Kumulur,Trichy,泰米尔纳德邦,- 621 712,电子邮箱:ioakumulur@tnau.ac.in 副主编 Asish Kumar Padhy B101,学生宿舍,国家植物基因组研究所,Aruna Asaf Ali Marg,新德里 - 110067,电子邮箱:apadhy@nipgr.ac.in Praveen Verma 房间号 211,Keshav 宿舍,Dr Yashwant Singh Parmar 园艺和林业大学,Nauni,Solan,HP-173230 电子邮箱:praveenver2014@gmail.com Rakesh Kumar 房间号。 16, Hemant 宿舍,IARI pusa 校区新德里,110012,电子邮件:Rakeshmund94@gmail.com Priyank Sharma Kanta Kaundal Niwas 近 Pwd Third Circle Chowk Bazar Solan Himachal Pradesh,Pincode-173212 电子邮件:sharmapriyank877@gmail.com Ashish Gautam 博士。学者(GPB),房间编号 143,宿舍 Shashtri Bhawan,GB Pant 农业与技术大学,Pantnagar,北阿坎德邦,邮政编码 - 263145,电子邮件:gautam.ashish801@gmail.com Tapas Paul 房间编号 206,CHS 宿舍,老校区 ICAR-中央渔业教育学院 Versova,Seven Bungalow,Andheri West,孟买 400061,电子邮件:tapas.aempa903@cife.edu.in Utpalendu Debnath Near Janani 宾馆,Jail Ashram Road,Dhaleswar,Agartala,西特里普拉邦,特里普拉邦-799007 电子邮件 – utpalenduagri.bsc@gmail.com Anurag Bhargav 18,Hirabaug Society,80 Feet Road,Wadhwan Surenreanagar,古吉拉特邦-363002 电子邮件: anuragbhargav@student.aau.in Sukriti Singh 18, Hirabaug Society, 80 Feet Road, Wadhwan Surenreanagar, Gujrat-363002 电子邮件:anuragbhargav@student.aau.in Vikas Lunawat Office No. 59, Mahila Samridhi Bazar , Budhapara
技术,塔什干,乌兹别克斯坦摘要全球能源部门正面临越来越多的困难,包括对效率的要求不断提高、供需模式的变化以及缺乏最佳管理分析。利用机器学习 (ML) 处理能源部门的数据可以逐步解决这些问题。ML 算法能够分析设备数据、构建预测模型并解决与可持续性相关的问题。在智慧城市中,机器学习算法的集成可以自动响应电价波动,从而促进对能源消耗的有效控制。采用机器学习的系统可以帮助能源供应商适应变化的可再生能源供应。世界范围内,人们越来越重视低排放能源,从而导致太阳能光伏、风电场和海洋能源系统的装机容量增加。因此,人工智能和机器学习将在有效管理能源部门的挑战中发挥至关重要的作用。微电网的实施带来了重大挑战,需要模型预测控制 (MPC) 等先进的控制技术。本文重点介绍如何将 MPC 用于微电网的能源管理,旨在提供 MPC 方法在可持续能源管理方面的发展的最新概述。 关键词:机器学习、预测模型、可持续管理 1. 简介 在过去的几十年里,世界能源部门面临着越来越大的挑战,例如需求和效率的增加、供需模式的变化以及缺乏最佳管理分析。在发展中国家,这一挑战更加严峻。Debnath KB (2018) 声称,大量温室气体对全球变暖起着至关重要的作用,因为燃烧煤炭、石油和天然气会产生有害的温室效应,从而导致全球变暖和气候变化。为了应对这种气候变化,有必要减少产生的温室气体,如化石燃料产生的二氧化碳排放,并使用替代可再生能源 (RES),如太阳能光伏 (PV) 板、风力涡轮机和水坝,以极低的运营成本和绿色能源环境发电。实施绿色能源的城市需要智能电网来整合能源,以获得不间断的电力供应,并通过数据驱动的控制系统优化资源管理。另一方面,由于太阳能和风能发电取决于阳光和风速,可再生能源发电可能会出现短缺或过剩。因此,为了持续向负载供电并避免电压和频率波动,本地现场微电网被集成到主电网(称为宏电网)中。当可再生能源发电量减少时,宏电网将提供