水中的trip含量的抽象建模是一种有意义的方法,可以评估气候模型中水周期的表示,因为它可以追溯水周期内和储层之间的通量(平流层,对流层和海洋)。在这项研究中,我们介绍了在大气通用循环模型(AGCM)MIROC5 -ISO中的自然trimatium及其在1979 - 2018年期间的模拟。由于最近发表的trium生产计算,我们能够首次研究与11年太阳能周期对降水中Tritium的自然产量产生的影响。miroc5 -iso正确模拟了对降水中tri的大陆,纬度和高度影响。与平流层 - 对流层交换相关的季节性trip含量峰值也可以准确地模拟时间安排,即使MiroC5 -ISO低估了变化的幅度。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div>与在南极洲的沃斯托克(Vostok)的观察结果一致,例如,我们的模拟表明,内部气候变异性在极性沉淀中在tritium中起重要作用。由于其对南极涡流的影响,南环模式增强了生产成分对南极降水的trim的影响。在格陵兰岛,由于北大西洋振荡对湿度条件的影响,在降水中检测到降水中11年太阳周期的东 - 西对比。
摘要:世界气象组织的年度至少年预测中心每年进行预测,作为区域气候中心,气候前景论坛以及国家气象和水文服务的指导。然而,大型火山喷发(例如1991年的皮纳图波山)的发生将使这些预测无效,并促使生产者改变其预测。为了协助和准备衰老的预测中心,以实现这种情况,世界气候研究计划下的火山反应活动及其在气候(APARC)(APARC)的作用(APARC)和际气候预测项目(DCPP)组织了社区锻炼,以应对2022年4月的假设大型爆发。作为本练习的一部分,使用易于火山溶胶强迫发生器来提供按照单个十年预测模型的配置定制的平流层硫酸盐气溶胶光学特性。参与中心随后从其最初的初始化日期预测了2022 - 26年的预测,在大多数情况下,也从2022年4月初的爆发开始之前,也是两种候选人响应方案。本文介绍了该APARC/DCPP火山响应准备工作的各个方面(Volres-RE),包括假设的火山事件,根据八个贡献中心的两个协议进行了修改的预测,在该练习的协调和执行过程中所学到的经验教训以及对十年级预测社区的建议,以实现对实际的ERUPTIPTIOUTS,以进行upputtiuts upputtion。
气候模型表明,气候反馈参数λ表示地球辐射响应对全球表面温度变化的大小随时间而变化。这是因为λ取决于海面温度的模式。然而,在多年观测中尚未评估λ的时间变异及其与海面温度模式的关系。在这里,使用最新的观察,我们评估了连续的25年窗户的全球能源预算,并在1970年至2005年间得出了λ的时间序列。我们发现λ在[ - 3.2,−1.0] w·m -2·k -1以来自1970年以来变化。这些变化与与PACIFID腐蚀振荡相关的海面温度模式变化有关。对历史海面温度的观测强迫的气候模型模拟显示了与观察结果一致的1970 - 2005年平均λ。然而,它们未能再现自1970年以来观察到的λ时间变化,这与Pacififfif-decadal振荡相关,这意味着气候模型低估了在十年时间尺度上的模式效应。
2024 年 12 月 11 日至 12 日 | 新德里 2024 年全球经济政策论坛 (GEPF) 由印度政府财政和公司事务部长 Smt. Nirmala Sitharaman 主持,将于 2024 年 12 月 11 日至 12 日在新德里召开。这个享有盛誉的论坛将汇集来自行业、政府和知名智库的有影响力的领导人,共同应对影响印度和全球经济的关键挑战和机遇。今年的论坛将成为经济思想家和政策制定者的独家平台,在不断变化的地缘政治格局背景下概述印度和全球经济的十年优先事项。 GEPF 将通过关于可持续增长、技术转型、复原力和合作的深入会议,催化高层对话,塑造经济政策和行业战略的未来。论坛将邀请众多令人印象深刻的海外演讲嘉宾,包括瑞士洛桑国际管理发展学院院长 David Bach 教授;世界银行集团首席经济学家兼发展经济学高级副总裁 Indermit Gill 博士;亚洲尽责管理中心首席执行官 Rajeev Peshawaria 先生;加州大学圣地亚哥分校塔塔校长经济学教授 Karthik Muralidharan 博士;荷兰合作银行全球战略师 Michael Every 先生;新加坡洛桑国际管理学院创新教授兼亚洲系主任 Mark Greeven 教授;波士顿咨询集团全球首席经济学家 Philipp Carlson-Szlezak 博士;国际货币基金组织亚太部主任 Krishna Srinivasan 博士。随函附上会议及发言人的参考名单。论坛将通过以下方式为面向未来的组织提供竞争优势:
美国宇航局地球科学部的十年战略:• 履行我们的记录计划承诺,推动飞行、研究、应用和技术发展• 实施下一代能力,满足指定的可观测和探索者• 定位美国宇航局地球科学,以最大限度地提高科学和社会效益
苔原和北方生态系统涵盖了北部圆形冻土区域,并正在经历快速的环境变化,对全球碳(C)预算具有重要意义。我们分析了多年时间序列,其中包含在70个永久冻土和非层状生态系统中的二氧化碳(CO 2)通量的302次估计,以及在181个生态系统中对夏季CO 2通量的672次估计。,尽管夏季的吸收率相似,但我们发现在非冻土生态系统中的年度CO 2下沉量增加,但没有多年冻土生态系统。因此,最近的非生长季节CO 2损失显着影响了多年冻土生态系统的CO 2平衡。此外,对年际变异性的分析显示,在推定的氮限制地点和在夏季降水量不太依赖用水的地方,夏季更温暖会扩大C周期(提高生产率和呼吸)。我们的发现表明,水和养分的可用性将是这些生态系统对未来变暖的C周期反应的重要预测指标。
2017 年地球科学与空间应用十年调查(于 2018 年初发布)确定了关键科学问题,并确定了优先观测需求,以推进美国在地球科学领域的努力并支持气候建模和天气预报等关键应用。
•预计2024年至2028年之间每年的全球平均近表面温度预计将比1850-1900年的平均水平高1.1°C至1.9°C。•可能(80%的机会),在2024年至2028年之间,全球平均平均近表面温度将超过1850-1900的平均水平1.5°C。五年平均值将超过此阈值大约不是(47%)。•2024年至2028年之间至少一年可能比记录中最温暖的一年(目前2023年)要温暖一年。2024年至2028年的五年平均机会比最近五年(2019-2023)高(90%)。•2023-24厄尔尼诺尼诺已经达到顶峰,并且很可能在2024年过渡到LaNiña。•相对于1991 - 2020年期间的平均水平,在接下来的五个延长冬季(11月至3月)的北极变暖预计将大于全球平均温度的变暖大三倍。•相对于1991 - 2020年平均值,预测2024年的降水模式表明,巴西东北部降雨的机会增加增加,而非洲萨赫勒(Sahel)的潮湿条件的机会增加,这与北大西洋地区的较温暖的温度一致。•7月至9月季节的苏达诺 - 撒哈利亚人(Presass)地区可能会看到2024-2028的平均降雨量,尽管个人季节可能并非如此。•2024 - 2028年5月至9月的北大西洋预测条件表明,热带气旋活性高于平均水平。•2024 - 2028年3月的海冰预测表明,巴伦支海,白令海和俄克拉斯大海的海冰浓度进一步降低。
抽象的十年预测定期关注单个值的预测性,例如均值或极端。在这项研究中,我们研究了全球和欧洲尺度上完整的基础表面温度分布的预测技能。我们研究了Max Planck Institute地球系统模型decadal预测系统的初始化后广播模拟,并比较季节性每日温度的分布与估计气候和非传统历史模拟的估计。在分析中我们表明,初始化的预测系统在北大西洋地区具有优势,因此可以对整个温度频谱进行可靠的预测,以提前两到10年。我们还证明了初始化气候预测预测温度分布的能力取决于季节。