气候变化适应:“十年时间尺度上的气候变化适应政策和缓解情景测试,旨在实现区域和国家层面可靠性的真正突破,以了解变化的原因和解释反馈机制,并预测可能的演变轨迹”
• 将人力资源开发与十年计划主题优先事项相结合(在部际委员会中与行业总体规划进行协调),充分利用大学/理工大学、TVET 和 CET 学院、SETA、科学委员会、国家设施、国有企业和其他公共研究组织的独特属性
摘要海洋生态系统模型(MEMS)越来越多地受到地球系统模型(ESM)的驱动,以更好地了解海洋生态系统动力学,并在气候变化的潜在情况下分析海洋生态系统的替代管理工作的影响。然而,政策和商业活动通常发生在季节到年代的时间尺度上,这是全球气候建模社区中广泛使用的时间范围,但在此,对MEMS的技能水平评估处于起步阶段。这主要是由于技术障碍阻止了全球MEM社区进行大型集合模拟,以进行系统的技能评估。在这里,我们开发了一个新颖的分布式执行框架,该框架由低技术和免费的技术构建,以实现链接的ESM/MEM预测集合的系统执行和分析。我们将此框架应用于季节性到少年时间尺度,并评估初始化际ESM预测合奏中回顾性预测不确定性如何影响机械和时空显式全球滋养动力学mem。我们的结果表明,与与重建渔业相关的广泛假设相比,ESM内部变异性对MEM可变性的影响相对较低。我们还观察到结果对ESM的特异性也很敏感。我们的案例研究需要进一步的系统探索,以消除气候变化,渔业场景,MEM内部生态假设和ESM变异性的影响。最重要的是,我们的案例研究表明,一个简单且免费的分布式执行框架有可能增强任何具有基本功能的建模组,以使海洋生态系统建模运行。
该课程将全面概述冰冻圈在无缝预测和气候系统建模中的复杂作用。冰冻圈影响天气和气候模式、海洋环流以及水文循环。它在气候反馈机制中发挥着关键作用,并在季节至十年的时间尺度上充当水和能量的储存器。将冰冻圈数据和过程纳入气候模型对于提高气候预测和预估的准确性和可靠性至关重要。
信息和通信技术(ICT)的当前硬件软件(HW-SW)范式已达到其限制,必须更改。重要的是要确定驱动信息技术以及行业面临的障碍/挑战的重大趋势。需要对半导体的十年计划,它将通过以下方式改变半导体行业:•支持半导体公司的战略愿景•将“在地面上占有一席之地”,以激发和挑战最佳和
• 来自十年调查或模型;各种尺寸的航天器;系统的系统(空间互联网);各种组织 • 就传感器数量/类型、航天器、轨道、分辨率、机载与地面计算、传感器间通信等进行交易。 • 系统提前设计为任务或观测系统,或随着时间的推移逐步和动态地设计 2. 响应各种感兴趣的科学和应用科学事件:各种整体观察
•增强了太平洋地区主义领导力计划•重新加强了无核太平洋条约•加强网络安全安排•太平洋领导者性别平等宣言•维护和促进太平洋文化和传统•太平洋卓越的卓越中心深海科学•朝着全球塑料范围的塑料资源求助•动机•动机•准备好天气太平洋。•太平洋气候流动性框架•委托太平洋弹性设施•平衡太平洋劳动力流动框架•增强可持续连通性以增强供应链的弹性
Q-1 对于 2023 年探测器 AO 任务主题,是否有特定的波长截止值用于排除或包含,以满足远红外或 X 射线探测器的定义?例如,远红外任务是否也可以包括中红外仪器,只要远红外仪器响应十年调查中概述的目标?A-1 关于探测器 AO 任务主题的唯一标准是响应 2020 年天文学和天体物理学十年调查、2020 年代天文学和天体物理学发现途径,如第 7.5.3.2 至 7.5.3.4 节所述。提议者有权争论响应性。天体物理学部不会使用波长来确定响应性,而是使用外部同行评审的标准流程来评估响应性。 Q-2 2023 年探测器 AO 社区公告指出,“NASA 中心的参与必须符合 NASA 的中心角色政策。”这是否意味着 GSFC 和 JPL 可以充当牵头中心,还是其他中心也包括在内?A-2 中心角色可在 NASA 中心角色文件中找到,该文件不公开。随着 NASA 中心角色文件的最新 2022 年更新,科学任务理事会 (SMD) 改变了竞争角色中小型/中型/大型任务的定义。此调整基于从 2016 年(首次确定水平时)到 2023 财年的通货膨胀率。新语言如下:
大气与海洋之间的相互作用在能量重新分配方面起着至关重要的作用,从而维持气候系统的能量平衡。在本文中,我们研究了大气和海洋热量输送变化之间的补偿。受先前主要使用数值气候模型的研究启发,使用再分析数据集研究了这种所谓的 Bjerknes 补偿。我们发现大气能量输送 (AMET) 和海洋能量输送 (OMET) 变化在再分析数据集中通常具有很好的一致性。通过多个再分析产品,我们发现从年际到十年的时间尺度,Bjerknes 补偿存在于北半球从 40°N 到 70°N 的几乎所有纬度。补偿率在不同时间尺度的不同纬度达到峰值,但它们总是位于亚热带和亚极地地区。与一些数值气候模型实验不同,这些实验将补偿归因于瞬态涡流输送对数十年时间尺度上的 OMET 变化的响应,我们发现平均流对 OMET 变化的响应导致了 Bjerknes 补偿,从而导致冬季中纬度地区 Ferrel 环流在数十年时间尺度上的移动。该环流本身由涡流动量通量驱动。海洋对 AMET 变化的响应主要是风驱动的。在夏季,几乎没有任何补偿,所提出的机制不适用。鉴于历史记录较短,我们无法确定是海洋驱动大气变化还是相反。