无义介导的 mRNA 衰变 (NMD) 是一种真核 RNA 衰变途径,在细胞应激反应、分化和病毒防御中发挥作用。它在基因表达的质量控制和转录后调控中发挥作用。NMD 也已成为癌症进展的调节剂,尽管现有证据支持其既是肿瘤抑制因子又是促肿瘤发生因子,具体取决于模型。为了进一步研究 NMD 在癌症中的作用,我们在 HT1080 人纤维肌瘤细胞系中敲除了 NMD 因子 SMG7,从而抑制了 NMD 功能。然后,我们比较了亲本细胞系、SMG7 敲除细胞系和我们重新引入 SMG7 两种亚型的拯救细胞系的致癌特性。我们还测试了一种抑制 NMD 因子 SMG1 的药物的效果,以区分 NMD 依赖性效应和假定的 NMD 非依赖性 SMG7 功能。使用基于细胞的分析和小鼠异种移植肿瘤模型,我们发现抑制 NMD 功能会严重损害致癌表型。分子通路分析表明,抑制 NMD 会大大降低基质金属蛋白酶 9 (MMP9) 的表达,而 MMP9 的重新表达会部分挽救致癌表型。由于 MMP9 促进癌细胞迁移和侵袭、转移和血管生成,其下调可能有助于降低 NMD 抑制细胞的致瘤性。总之,我们的结果凸显了 NMD 抑制作为一种治疗方法的潜在价值。
在核反应实验中,测量的衰变能谱可以洞悉衰变系统的壳结构。然而,由于探测器分辨率和接受效应,从测量中提取底层物理信息具有挑战性。Richardson-Lucy (RL) 算法是一种常用于光学的去模糊方法,已被证明是一种成功的图像恢复技术,该算法被应用于我们的实验核物理数据。该方法的唯一输入是观察到的能谱和探测器的响应矩阵(也称为传输矩阵)。我们证明该技术可以帮助从测量的衰变能谱中获取有关粒子非结合系统壳结构的信息,而这些信息无法通过卡方拟合等传统方法立即获取。出于类似的目的,我们开发了一个机器学习模型,该模型使用深度神经网络 (DNN) 分类器从测量的衰变能谱中识别共振状态。我们在模拟数据和实验测量中测试了这两种方法的性能。然后,我们将这两种算法应用于通过不变质谱测量的 26 O → 24 O + n + n 衰变能谱。使用 RL 算法对测量的衰变能谱进行去模糊处理后恢复的共振状态与 DNN 分类器发现的状态一致。去模糊处理和 DNN 方法均表明 26 O 的原始衰变能谱在约 0.15 MeV、1.50 MeV 和 5.00 MeV 处出现三个峰,半宽分别为 0.29 MeV、0.80 MeV 和 1.85 MeV。
德勤为许多全球最受赞赏的品牌提供业界领先的审计、咨询、税务和顾问服务,其中包括近 90% 的《财富》500 强企业和 8,500 多家美国私营公司。在德勤,我们努力实现我们的目标,即通过在更公平的社会中建立信任和信心来发挥重大影响。我们利用我们独特的商业敏锐度、技术掌握和战略技术联盟为各行各业的客户打造未来提供建议。德勤很自豪能够成为全球最大的专业服务网络的一部分,在对他们最重要的市场上为客户提供服务。我们的成员所网络拥有超过 175 年的服务历史,遍布 150 多个国家和地区。了解德勤全球约 460,000 名员工如何相互影响,请访问 www.deloitte.com。
同上在XVI。 29 A Greene,“国防军首席安格斯·坎贝尔警告说,深击和AI将推动'真相衰败'的时代” ABC新闻(在线)(在线)(2023年9月15日); D Hurst, “Democracies face ‘truth decay' as AI blurs fact and fiction, warns head of Australia's military” The Guardian (online) (14 September 2023) 。 30 DPP V Khan [2024] Actsc 19 at [39] ff(Mossop J)。 本文稍后在更长的时间内提到此决定。 31参见Riana Pfefferkorn,“法庭上的'Deepfakes'”(2020)29(2)波士顿大学公共利益法律杂志245;艾莉·达德利(Ellie Dudley),“‘摄像机确实说谎':新南威尔士州法院对AI的关注”(在线,2024年1月21日)。同上在XVI。29 A Greene,“国防军首席安格斯·坎贝尔警告说,深击和AI将推动'真相衰败'的时代” ABC新闻(在线)(在线)(2023年9月15日); D Hurst, “Democracies face ‘truth decay' as AI blurs fact and fiction, warns head of Australia's military” The Guardian (online) (14 September 2023) 。30 DPP V Khan [2024] Actsc 19 at [39] ff(Mossop J)。本文稍后在更长的时间内提到此决定。31参见Riana Pfefferkorn,“法庭上的'Deepfakes'”(2020)29(2)波士顿大学公共利益法律杂志245;艾莉·达德利(Ellie Dudley),“‘摄像机确实说谎':新南威尔士州法院对AI的关注”(在线,2024年1月21日)。
摘要:掺杂灯笼的纳米晶体(NCS)能够有效的光子上转换,即吸收长波长光和发射较短的波长光。启用上转换的内部过程是一个复杂的电子过渡和掺杂中心之间的能量转移网络。在这项工作中,我们研究了从β -nayf 4 NCS上的上升转换发射的上升和衰减动力学,并用ER 3+和YB 3+编码。红色和绿色上流排放的上升动力学是非线性的,反映了上转换的非线性性质,并揭示了填充发射状态的机制。激发状态衰减动力学是不符合的。我们使用光子实验揭示了潜在的衰减途径。这些在视觉上揭示了不同上转换途径的贡献,因为每个途径对光学状态的局部密度的系统变化都有明显的响应。此外,光学态的局部密度对仅核心NC的局部密度在质量上与核心 - 壳NC的作用在质量上不同。这是由于产生向上发射的电子水平的喂食与衰减之间的平衡所致。对此处提供的上转换动力学的理解可能会导致更好的成像和传感方法依靠上转换寿命或指导掺杂剂浓度的合理优化以使其更明亮。关键字:胶体纳米晶体,上转换,灯笼离子,激发状态动力学,光学状态的局部密度
在拓扑孤子范围内,涡流已经出现了显着且通用的解决方案。他们在物理学的各个领域中发现了应用,例如超导性[1]或超导性[2]中的凝结物或粒子物理模型中的应用[3,4]。Abelian-Higgs模型是支持相对论测量涡旋的典型模型(请参阅[5,6]和其中的参考文献)。该模型描述了在过去几十年中彻底研究了量规对称性的阶段,在量规对称性被自发折断的阶段中,uð1的量规场与带电标量场之间的最小耦合,从而更深入地研究了与这类与此类别的拓扑独奏相关联的现象。研究揭示了涡流的基本方面[3,7,8],它们在散射过程中的行为[9-11]或集体坐标的应用以降低
此预印本版的版权持有人于2024年3月28日发布。 https://doi.org/10.1101/2024.03.27.24304867 doi:medrxiv preprint