华盛顿大学核理论研究所,西雅图,华盛顿州 98195-1550,美国(日期:2021 年 2 月 1 日 - 9:54)摘要无质量无相互作用标量场理论的两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
摘要主要剂量系列后的免疫反应的轨迹决定了疫苗随时间的效力下降。在这里,我们报告了在没有感染的Chadox1 NCOV-19/AZD1222的两剂时间表之后的一年中维持免疫反应,并探索感染后抗体的衰减。总尖峰特异性IgG抗体滴度较低,两种低剂量的Chadox1 NCOV-19疫苗(两种低剂量)(P = 0.0006)(p = 0.0006)比2个标准剂量(认可的剂量)或低剂量或低剂量,然后是标准剂量疫苗。第一剂和第二剂之间的较长间隔导致较高的抗体滴度(p <0.0001);然而,没有证据表明抗体衰减的轨迹因间隔或疫苗剂量而异,而在第三剂Chadox1 NCOV-19之后,IgG抗体滴度的衰减遵循了类似的轨迹。感染后样品的趋势相似,最初的响应迅速衰减,但此后可测量的响应的持久性良好。抗体数据的外推(在两次Chadox1 NCOV-19之后)表明,抗体衰减的速率缓慢,表明抗体滴度至少维持了至少2年。这些数据表明,两剂Chadox1 NCOV-19,这可能会对严重的疾病和住院产生积极影响。关键词:疫苗,抗体,抗病毒免疫,疫苗接种缩写:AIC:Akaike的信息标准; ELISA:酶联免疫吸附测定; ELISPOT:酶联免疫疗法;欧盟:ELISA单位; IgG:免疫球蛋白G; LDLD:两种低剂量; LDSD:低剂量,然后进行标准剂量; mRNA:信使核糖核酸; ND50:稀释以实现50%的病毒中和; SARS COV-2:严重的急性呼吸综合征冠状病毒2; SDSD:2个标准剂量; SEAP:分泌的胚胎碱性磷酸酶; UKHSA:英国健康安全局; VE:疫苗功效; VOC:关注的变体
超强磁场在10 18高斯的阶次,最强的磁场在自然界中被预期在Rhic Energies的重离子碰撞的早期阶段就会产生[1,2]。磁场主要由观众产生,并且衰减非常快,其时间尺度与碰撞核的通道时间相当[1,2]。然而,田地的衰减可以通过法拉第诱导e ff ECT来补偿,该电场取决于培养基(例如电导率)和夸克的形成时间。此外,对初始电磁场的形成和衰变的研究对于在存在电磁(EM)磁场的情况下了解Quark-Gluon等离子体(QGP)的演变至关重要。重离子碰撞中的初始状态可能具有显着的纵向去相关,从而导致在不同的pseudorapity范围内重建的事件平面之间存在差异[3,4]。此外,能量沉积中的初始状态几何形状和不对称性可以演变为最终状态流量谐波和事件平面角相关性,该研究可用于约束各种初始状态模型,并通过碰撞核来理解能量沉积的机制。
华盛顿大学核理论研究所,华盛顿州西雅图 98195-1550,美国(日期:2021 年 2 月 10 日 - 21:58)摘要无质量无相互作用标量场理论中两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
图3:2022/2023学年,有资格参加北爱尔兰每个学校类别的FSM的学生的数量和百分比。图4:信息图显示了改善儿童口腔健康的一些好处。图5:HSCT地区(2018-2019)的5岁儿童中的平均衰减,缺失或填充牙齿的牙齿数量6:2015年至2022年为一般牙科诊所提供给儿童提供的治疗次数。图7:在全身麻醉下等待评估和干预的儿童数量。图8:北爱尔兰5岁儿童牙科衰减经历的流行率(2018/2019)
为511 KEV光子,衰减常数,光输出和能量分辨率的停止功率。停止功率被描述为在将能量沉积在晶体中之前通过光子传递的平均距离的倒数,并且与材料的密度和有效原子数成正比。较高的停止功率意味着电子将在材料中移动较短的距离,因为它会与材料中的原子更频繁地相互作用,因此间接地可以对入射光子进行更有效的检测。衰减常数取决于晶体中闪烁闪光灯的持续时间。较短的衰减常数意味着闪烁材料将能够在一定时间内产生更多的单个闪烁闪光灯,从而可以计算出更多的入射光子。光输出可以简单地描述为入射光子产生的闪烁光子的产率。较高的光输出意味着入射光子将触发更多闪烁光子的创建,从而增加空间和能量分辨率。最后,能量分辨率是准确确定相互作用光子能量的能力。这取决于能量方差,这是检测器确定的光子能量值的范围和
1.2。关于定理1.1的评论。我们首先描述定理1.1与现有文献的关系。Sahlsten的调查[55]概述了分形措施的傅立叶衰减主题。为了自相似的衡量问题,问题很困难,历史可以追溯到Erdős[17,18]。有许多多项式傅里叶衰减的自相似措施,还有许多甚至不是Rajchman的措施,但我们不会详细介绍,因为在本文中,我们关注的是非线性分形措施,人们经常期望多种傅立叶衰减。多项式傅立叶衰减,用于通过非线性地图Rñr进行自相似度量的推进。蚊子和Olivo [48,定理3.1]考虑在非线性全态映射下以非平凡的旋转为单位旋转的繁殖性自相似度量。Baker和Banaji [4]考虑一类措施的推动力,它们称之为在非线性地图rkñr下,将其称为r k的纤维产品度量。定理1.1以以下方式基于这些结果。