其中 η ( q ) = Q ∞ k =1 (1 − qk ) 是 Dedekind eta 函数,它计数所有能级 m 上的分区 p ( m )。在许多相关的物理应用中,可能会发生 N 级上的特定后代 ξ 同时是原发性的。这被称为零向量,它提供自己的 Verma 模块 V ξ ,该模块与由 | hi ⟩ 生成的所有其他状态正交。因此,它与 Vi 解耦并可以被商掉。在适当地从 Vi 中商掉所有零向量后,可得到不可约的 Virasoro 模块 H i 。显然,此过程减小了向量空间的大小,因此 ( 1 ) 中的 d(m) ≤ p(m)。这反映在不可约模块 H i 的特征中。例如,考虑 N 级上单个零向量 ξ 的情况,它已被商掉。注意,零场 ξ 具有共形权重 h ξ = hi + N 。原始 Verma 模块 V i 摆脱了 Verma 模块 V ξ ,
Algebraic numbers, Ring of integers of an algebraic number field, Integral bases, Norms and traces, The discriminant, Factorization into irreducibles, Euclidean domains, Dedekind domains, Prime factorization of ideals, Principal ideal rings, Lattices, Minkowski's Theorem, Geometric Representation of Algebraic Numbers, Class-group and class number, Computational Methods, Fermat的最后定理,Dirichlet的单位定理,二次残基。•参考1代数数理论,Serge Lang。•参考文献2计算代数数理论的课程,亨利·科恩(Henri Cohen)。b:有限领域的有限场(数学518),有限端的表征,不可减至的多项式的根,痕迹,规范和基础,统一和环形多样性的根,对有限型领域的元素的代表,多元元素和多元级别的多元元素,多元级别的多元元素,多元级别的多态元素,多元级别的多元元素,多元级别的多态元素,多元型元素,多元级别的多元元素,不可删除的多项式,多项式在有限场上的分解,指数总和,线序重复序列,最小多项式,有限磁场的理论应用,有限的几何形状,组合物,组合物,线性模块化系统,pseudorandom序列。•参考1有限领域及其应用简介,Harald Niederreiter Rudolf Lidl。
1。简介:“晶格数量的公式。。。”输入Pick的公式,Dedekind总和,Ehrhart多项式和计算复杂性。。。。。。。92 2。预定。Polyhedra的代数。 引入了欧拉的特征和其他重要估值。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95 3。 在有理多面体中为整数点生成函数。 与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。Polyhedra的代数。引入了欧拉的特征和其他重要估值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。95 3。在有理多面体中为整数点生成函数。与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 4。生成功能的复杂性。有理多面体中整数点集的生成函数的生成函数具有“短”(在polyhedron的输入大小中)表示为有理函数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。106 5。晶格点的有效计数。显示了在固定维度中计数整数点的多项式时间算法。。。。。。。。。。。。。。。。。。。。110 6。存在“本地公式”。有理多主中的整数点的数量可以表示为多层面部面积的线性组合与系数与系数的线性组合,仅取决于脸部多层的局部结构。。。。。。。。。。。。。。。。115 7。组合Stokes的公式及其应用。a mcmullen的定理被证明,并获得了具有中央对称方面的晶格晶状体和晶格多型的明确公式。。。。。。。。。。。。。。。。。。。。。。。。116
代数数字场的不变性计算,例如积分碱基,判别因子,主要分解,理想的班级组和单位群,对于自身的缘故,以及对于众多应用,对于二聚体方程的解决方案都很重要。这项任务的实用性(有时被称为Dedekind计划)一直是过去十年来计算数理论的主要成就之一,这要归功于许多人的影响。即使仍然存在一些实际问题,也可以将其视为以令人满意的方式解决的问题,现在,询问一个专业的计算机代数系统,例如康德/kant/kash,lidia,magma或pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/pari/gp,以执行数字的计算。代数数理论,GTM 138,第一次于1993年发表(第三个更正的印刷1996年),此处称为[COH0]。该文本还处理其他主题,例如椭圆曲线,保理和原始测试。概括这些算法是很重要的。可以考虑几种发生的变化,但最重要的是对全球功能场的一体化(在一个有限范围内的一个变量中的有限扩展)和数值相对扩展。与[COH0]中一样,在本书中,我们将仅考虑数字场,而根本不涉及功能场。因此,我们将解决与数字领域有关的一些特定主题;与[COH0]相反,在选择主题的选择中没有详尽的尝试。主题之所以选择主要是因为我的个人品味,当然是因为它们的重要性。本书中讨论的几乎所有主题从算法方面(通常是1990年后)都是很新的,并且几乎所有算法都已在数字理论软件包/GP中实施和测试(请参阅[COH0]和[COH0]和[BBBCO])。受试者是新事物的事实并不意味着他们很困难。实际上,正如读者在深入阅读本书时所看到的,对数字理论的某些部分的算法处理实际上比理论处理要容易得多。一个很好的例子是计算类场理论(见第4至6章)。我并不意味着证据变得更简单,而是通过研究其算法方面对主题的掌握更好。如前所述,本书中讨论的大多数主题的共同点是,我们处理相对扩展,但我们也研究其他主题。我们将看到,对于绝对情况,[COH0]中给出的大多数算法都可以推广到相对情况。