Batyypolypus和Muusoctopus的分类学长期以来一直被原始的差异和难以区分形态学分类而困惑。我们的目的是将DNA条形码与物种划界技术和成熟雄性的形态学鉴定结合在一起,以鉴定北部亚特兰氏菌中存在的沐浴型和muusoctopus物种,并提供有关物种分布的其他信息。From 298 specimens collected during biannual Deepwater Timeseries cruises and other aligned surveys undertaken by Marine Scotland onboard MRV Scotia between 2005–19, we identified Bathypolypus arcticus, B. ergasticus, B. bairdii, B. sponsalis, B. pugniger, Muusoctopus normani and M. johnsonianus as well as an unidentified我们得出的结论可能是一种新物种。我们显示了DNA条形码在识别难以区分的物种(例如深海章鱼)方面的实用性。像我们这样的研究对于对此类群体的分类法的清晰度至关重要,并确定其中物种的真实多样性和分布。
创伤性脑损伤(TBI)是指由外力造成的脑损伤,典型的影响很大,通常是由于汽车事故,跌倒或运动损伤等事件造成的。在2019年全球记录了超过2700万例新的TBI病例,这种类型的伤害很常见,可能会威胁生命[1]。尽管在影响时发生了主要伤害,但TBI患者面临着次要损伤的巨大风险,在初次创伤后的几个小时甚至几天内,这种损伤可能会逐渐发展[2]。这些次要侮辱与颅内压增加(ICP)有关,这是颅库内压力的危险增加。当ICP增加时,可以限制脑血流。这种限制可能导致脑缺血,其中大脑被剥夺了氧气,这是ICP升高的主要伤害作用。紧急医疗干预需要管理和减少ICP,因为ICP的未经治疗的海拔高程会导致永久性神经系统损害,昏迷甚至死亡。预防和管理次要损伤对于对TBI患者的治疗至关重要,并且通常涉及对ICP的持续监测,稳定患者的状况以及采用干预措施,例如药物,手术减压或脑脊髓液流体,以最大程度地损害进一步的损害。迅速治疗升高的ICP可以显着提高预后,并降低长期残疾的可能性[3,4]。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
•了解分类和风险分层的生物学假设,治疗学领域的持续/必需研究以及使用对乳腺癌的生物标志物精确医学的使用方法的知识。
机器学习 (ML) 算法已应用于医学成像,其在医学领域的使用日益增多。尤其是深度学习 (DL),已证明在图像评估和处理方面更为有效。深度学习算法可能有助于并简化其在泌尿科成像中的使用。本文介绍了如何创建用于泌尿科图像分析的卷积神经网络 (CNN) 算法。深度学习是 ML 的一个分支,包括多层神经网络。卷积神经网络已广泛应用于图像分类和数据处理。1 它首先由 Krizhevsky 等人应用于图像分类。2 他们在 2012 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中凭借名为 AlexNet 的深度 CNN 赢得了比赛,该比赛由 120 万张日常彩色图像组成。3 在另一个 CNN 模型中,Lakhani 等人 4 证明他们
重新评估期中考试:学生将在考试期间访问他们的期中考试。担心如何在中期考试中有特定问题的学生可以在接受标记考试之日的两个星期内通过电子邮件向教练提交请求。请求应指定要重新评估哪个问题,(2)该请求的基本原理,以及(3)提出的标记。重要的是,一旦提交了重新评估请求,就可以根据教师的酌处权来调整标记。不允许学生与他们一起参加期中考试,也不可以为他们拍照,因此,如果令人担忧,建议学生在考试期间做笔记。TA无权在中期考试中进行权衡,这是教练只能做的事情。一旦重新评估问题,也可以注意标记。
人类将在接下来的25年中发生巨大变化,让人联想到古腾堡(Gutenberg)发明印刷机发明的第一次信息革命发生的事情。印刷机允许广泛地共享艺术,科学和工程学的知识。对这些信息的新发现均鼓励了新的表达和创新,以至于它点燃了一场始于欧洲的工业革命,并在几个世纪后在北美达到顶峰。它广泛地实现了有效和稳定的制造工艺,这些过程有助于用机器制造的商品代替手工生产的商品,减少建筑财富的摩擦,并改善了大多数人的生活水平。一场新的信息革命始于大约60年前(1950年代至1960年代),当时Shockley发明了晶体管 - 巧合的是,大约在美国启动其太空计划的同时。晶体管导致了集成电路的开发,从而促进了较小的计算机的创建,最终为互联网的出现铺平了道路。与Internet的开发并行的是对AI系统的早期探索,其中包括人工神经网络,基于知识的系统,模糊逻辑和进化计算,仅举几例。现代AI研究始于1960年代,直到计算能力急剧增加,并且互联网开始为培训模型生成大量数据,才产生显着的结果。现在,AI系统正在产生惊人的结果,并将永远改变我们的未来。
Insilico Medicine 专有功能使各种行业都具备尖端潜力。计算靶标识别正在打破传统方法的范式。数字技术大大拓宽了可能发现的靶标范围,从而可以快速发现新靶标。用于药物或靶标比较的虚拟工具大大提高了各个阶段的药物发现效率,极大地影响了每个分子的资源分配。数字化前人类和人类靶标或药物验证的可能性开辟了广泛的分子分析,并显著降低了药物开发领域的成本并提供了风险管理选项。
Phil Town、Rule #1 Investing, Inc. 或其子公司,以及其各自的任何管理人员、雇员、代表、代理或独立承包人均不是持牌金融顾问、注册投资顾问或注册经纪交易商。他们既不提供投资或金融建议,也不提出投资推荐,也不从事交易业务。个人交易示例仅用于教育和演示目的。它们不代表任何账户中的任何头寸或持续回报,也不代表对未来收益的预期。演讲者和培训师可能有其他积极或消极的立场。Rule #1 Investing, Inc. 或其任何关联方提供的信息或意见均不构成购买或出售任何证券、期货、期权或其他金融工具的邀请或要约。
