深度学习是目前最成功的机器学习方法,在对象识别,语音和语言理解,自动驾驶汽车,自动驾驶游戏等方面取得了显着成功。对如此广泛而有影响力的领域进行单个定义并不容易。但是,这是克里斯·曼宁(Chris Manning)的最新定义:1 1来源:https://hai.stanford。edu/sites/default/files/2020-09/ai-definitions-hai.pdf。深度学习是使用具有连续(实际数字)表示的大型多层(人工)神经网络的使用,有点像人类大脑中的分层神经元。目前,它是最成功的ML方法,可用于所有类型的ML,从小型数据和更好的扩展到大数据和计算预算,具有更好的概括。
仅举几个里程碑:在2019年Google(与NASA一起)获得了“量子至上”,仅在2020年被中国以100亿美元的价格超越中国。CRISPR-CAS9基因组编辑技术于2020年获得诺贝尔奖,而CRISPR Therapeutics的市值为110亿美元。DeepMind解决了一个主要的蛋白质折叠挑战(Alphafold),而Muzero程序标志着自我学习的AI中的另一个里程碑(Muzero可以教会自己参加比赛,国际象棋和Atari游戏)。OpenAI发布了GPT-3,该语言模型使用深度学习来产生类似人类的文本。,列表还在继续。
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
“水下时间”仅受潜水员疲劳和任务时间压缩的限制;原本需要一周时间的维护任务(包括计算舱和水下时间)可以在一天内完成。Can-Dive 已经研究 Newtsuit 三年了,它仍处于研发阶段,但计划于今年进行高级操作试验。这一发展最终可能被证明是一个完整的循环 spinotaf,它从航空航天技术转移,并最终产生可转移到航空航天系统的技术进步。NASA 正在研究用于舱外活动的宇航服设计,因为
多个方面正在加速取得重大突破 在我们的 2021 年报告中,我们强调了欧洲深度科技的巨大潜力。事实上,欧洲深度科技度过了最好的一年,获得了超过 220 亿美元的融资,并以 10 亿美元的价格退出。从那时起,我们还看到量子计算(第一个 100+ 量子比特处理器和硅基设备中近乎无误差的量子计算得到验证)、核聚变(产生的能量几乎是记录的三倍)、空间技术(Starlink 为乌克兰提供互联网覆盖、詹姆斯韦伯太空望远镜、新的登月任务)、生成性人工智能(Dall-E 转向商业用途、稳定扩散文本到图像生成性人工智能发布、ChatGPT 在 5 天内覆盖 100 万用户)等关键领域取得了巨大突破等等。
她是印度第一和首要战略人力资源咨询公司Shilputsi Consultants的首席执行官。SMT。sheth是人力资源和战略领导力的杰出领导者,已经花费了25年以上的时间建立和维持高级执行关系,表现出杰出的分析,战略和解决问题的技能。她以解决各种人力资源问题的专业知识而闻名,同时保持文化敏感性并为组织增添全球可持续性和最佳实践。作为第二代企业家和有成就的领导者,她继续推动业务增长和卓越的领导力,为人力资源和战略领导力格局做出了重大贡献。她的领导人在2022年获得年度人力资源策略师Abhyudaya奖。她是行业论坛的经常发言人,也是众多出版物的客座专栏作家。
Insilico Medicine 专有功能使各种行业都具备尖端潜力。计算靶标识别正在打破传统方法的范式。数字技术大大拓宽了可能发现的靶标范围,从而可以快速发现新靶标。用于药物或靶标比较的虚拟工具大大提高了各个阶段的药物发现效率,极大地影响了每个分子的资源分配。数字化前人类和人类靶标或药物验证的可能性开辟了广泛的分子分析,并显著降低了药物开发领域的成本并提供了风险管理选项。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
话虽如此,我们甚至没有教科书。当然,#$@&%*!发生了,但是通常,使用官员时间,向我发送消息,询问我只在课堂上说的事情是浪费每个人的时间,只是上课。