对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
2024 年 4 月 28 日 — AI 艺术作品使用数十亿张图像和艺术范例生成。当您输入提示时,AI 艺术作品生成器会为您构建一幅图像。
Batyypolypus和Muusoctopus的分类学长期以来一直被原始的差异和难以区分形态学分类而困惑。我们的目的是将DNA条形码与物种划界技术和成熟雄性的形态学鉴定结合在一起,以鉴定北部亚特兰氏菌中存在的沐浴型和muusoctopus物种,并提供有关物种分布的其他信息。From 298 specimens collected during biannual Deepwater Timeseries cruises and other aligned surveys undertaken by Marine Scotland onboard MRV Scotia between 2005–19, we identified Bathypolypus arcticus, B. ergasticus, B. bairdii, B. sponsalis, B. pugniger, Muusoctopus normani and M. johnsonianus as well as an unidentified我们得出的结论可能是一种新物种。我们显示了DNA条形码在识别难以区分的物种(例如深海章鱼)方面的实用性。像我们这样的研究对于对此类群体的分类法的清晰度至关重要,并确定其中物种的真实多样性和分布。
目录:1 I.引言2 II。住宅太阳能3 1。财务障碍和最佳价格点4 2。缺乏鼓励部署住宅太阳能和存储的政策,并且缺乏帮助满足电网灵活性需求的赔偿6 3。不一致和缓慢的本地许可证/屋顶7 4。净会议容量上限7 5。增加了电池升级的需求(缺乏总体策略)8 6。屋顶8 III上的不必要的挫折。社区太阳能8 1。简化公共服务委员会的繁琐许可程序9 2。删除任意3 MW储备容量限制9 3.确保有效实施社区太阳能的合并计费(社区太阳能汇入了公用事业法案)。9 4。实施40%LMI目标的挑战10 4。PSC申请处理中的瓶颈10 4。社区太阳能和公用事业量表10 1。本地分区,允许和选址11 5。实用程序比例仅11 6。总体12
- 常见算法:线性回归,决策树,支持向量机(SVM),K-Nearest邻居(K-NN)。- 深度学习是机器学习的一个子集,它使用具有多个层(深神经网络)的神经网络来对大型数据集中的复杂模式进行建模。
摘要◥目的:大约20%的RAS野生型转移性结直肠癌(MCRC)的患者经历了对抗EGFR抗体西素单抗的客观反应,但很少实现消除疾病。肿瘤收缩的程度与长期结局相关。我们的目的是找到合理组合,通过破坏对抗凋亡分子的适应性依赖性(BCL2,BCL-XL,MCL1)来增强西妥昔单抗的效率。实验设计:实验是在患者衍生的异种移植物(PDX)和类器官(PDXO)中进行的。凋亡的底漆。促凋亡和抗凋亡蛋白复合物。通过caspase激活PDXOS和监测PDX生长来评估组合疗法的影响。结果:由314个PDX队列中的人口试验,由许多患者确定,确定46个模型(14.6%),具有明显的
关于 InstaDeep InstaDeep 成立于 2014 年,是欧洲、中东和非洲地区企业决策型 AI 产品的领导者,总部位于伦敦,在巴黎、突尼斯、拉各斯、迪拜和开普敦设有办事处。凭借在机器智能研究和具体业务部署方面的专业知识,该公司在 AI 优先的世界中为其合作伙伴提供了竞争优势。利用其在 GPU 加速计算、深度学习和强化学习方面的丰富专业知识,InstaDeep 打造了新颖的 DeepChain™ 平台等产品,可解决各行各业最复杂的挑战。InstaDeep 还与人工智能生态系统的全球领导者建立了合作关系,例如 Google DeepMind、NVIDIA 和英特尔。该公司是英特尔 AI Builders 计划的一部分,并被 NVIDIA 评为首选深度学习合作伙伴。