1。北京大学基础医学科学学院生理学和病理生理学系;血管稳态和改造的国家主要实验室,中国北京100191。2。人类解剖学,组织学和胚胎学系的癌症和细胞生物学计划,基础医学科学学院,北京大学健康科学中心,北京100191,中国。3。北京蛋白质翻译后修饰和细胞功能的北京关键实验室生物化学和分子生物学系,基础医学科学学院,北京北京北京北京100191的北京大学健康科学中心基础医学科学学院。4。CAS关键实验室在上海营养与健康研究所,上海生物科学研究所,中国科学院上海研究所,中国上海200031,中国。5。药物生物技术的国家主要实验室,MOE疾病模型动物研究的主要实验室,模型动物研究中心和江苏分子医学的主要分子医学实验室,南京大学医学院,中国南京210093,中国。
摘要:在某些情况下,骨骼在骨折后无法完全愈合。这些情况之一是骨骼不足的临界大小骨缺损,骨骼无法自发治愈。在这种情况下,需要长时间的复杂骨折治疗,这具有并发症的相关风险。使用的常见方法,例如自体和同种异体移植物,并不总是会导致成功的治疗结果。当前增加骨形成以弥合缝隙的方法包括在骨折侧应用干细胞。大多数研究研究了间充质基质细胞的使用,但有关诱导多能干细胞(IPSC)的证据较少。在这项研究中,我们研究了小鼠IPSC负载的支架和脱细胞的支架的潜力,这些支架含有来自IPSC的细胞外基质,用于在小鼠模型中处理关键大小的骨缺损。体外分化,然后是艾丽丽莎林红染色和定量逆转录聚合酶链反应确认了IPSCS系的成骨分化潜力。随后,进行了使用小鼠模型(n = 12)进行临界骨缺损的体内试验,其中将PLGA/ACAP - 骨传导性支架移植到骨缺陷9周中。将三组(每组n = 4)定义为(1)仅骨连导支架(对照),(2)IPSC衍生的细胞外基质,将播种在支架上,(3)IPSC扎在脚手架上。IPSC种子PLGA/ACAP支架的移植可以改善小鼠关键大小骨缺损的骨再生。IPSC种子PLGA/ACAP支架的移植可以改善小鼠关键大小骨缺损的骨再生。Micro-CT和组织学分析表明,植入后9周后9周的骨骼体积诱导的成骨分化的IPSC随后诱导成骨分化导致骨骼体积高明显高于骨失位的支架。
摘要:心力衰竭(HF)是一种进行性慢性病,仍然是全球死亡的主要原因,影响了6400万以上的患者。HF可能是由具有单基因病因的心肌病和先天性心脏缺陷引起的。与心脏缺陷发展相关的基因和单基因疾病的数量正在不断增长,并包括遗传的代谢杂志(IMD)。已经报道了几种影响各种代谢途径的IMD,出于心肌病和心脏缺陷。考虑到糖代谢在心脏组织中的关键作用,包括能量产生,核酸合成和糖基化,与心脏表现相关的越来越多的与碳水化合物代谢相关的IMD越来越多。在这项系统的综述中,我们提供了与碳水化合物代谢相关的IMD的全面概述,这些IMD呈现出心肌病,心律失常疾病和/或结构性心脏缺陷。我们识别出患有心脏并发症的58 IMD:3糖/糖连接转运蛋白的缺陷(GLUT3,GLUT10,THTR1); 2个磷酸盐途径的疾病(G6PDH,TALDO); 9糖原代谢疾病(GAA,GBE1,GDE,GYG1,GYS1,LAMP2,RBCK1,PRKAG2,G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO,PIGT,PIGV,PMM2,POMT1,POMT2,SRD5A3,XYLT2); 15碳水化合物连接的溶酶体储存疾病(CTSA,GBA1,GLA,GLB1,HEXB,IDUA,IDS,IDS,SGSH,NAGLU,HGSNAT,GNS,GNS,GALNS,GALNS,GALNS,ARSB,ARSB,GUSB,GUSB,ARSK)。通过这项系统评价,我们旨在提高人们对碳水化合物连接IMD的心脏介绍的认识,并引起人们对碳水化合物连接的致病机制的注意,这些致病机制可能是心脏并发症的基础。
抽象背景先天性心脏缺陷(CHD)影响了大约一半的唐氏综合症患者(DS),但是不完全渗透的分子原因是未知的。先前的研究主要集中在识别DS个体中与CHD相关的遗传危险因素,但是缺乏对表观遗传标记的贡献的全面研究。与没有CHD的DS个体相比,我们旨在识别和表征具有主要CHD的DS个体的新生的干血点(NDB)的DNA甲基化差异。方法我们使用了Illumina Epic阵列和全基因组Bisulfite测序(WGB)来定量加利福尼亚生物库计划的86个NDBS样品的DNA甲基化计划:(1)45 DS-CHD(27雌性,18个女性,18个男性)和(2)41 ds non-chd non-chd non-chd non-chd non-chd non-chd(27雌性)。我们分析了全球CPG甲基化,并在DS-CHD与DS非CHD比较(包括性别结合和性别分解)中鉴定出差异化甲基化区域(DMR),以纠正性别,血液收集年龄和细胞类型的性别。chd dmrs在CpG和基因上,染色质状态和基因组坐标的组蛋白修饰中的富集,以及通过基因映射的基因本体论富集。DMR,并将DS与典型发育(TD)WGBS NDBS样品中的甲基化水平进行比较。结果,我们发现DS-CHD雄性中的全球CpG低甲基化与DS非CHD雄性相比,这是归因于成核红细胞水平升高而在女性中看不见的。与DS非CHD个体相比,在DS-CHD的NDB中检测到DNA甲基化的性别特异性特异性。在区域级别,我们在性别组合,仅女性和仅使用男性的58、341和3938 CHD相关的DMR中,以及使用的机器学习算法,以选择19个只能将CHD与非CHD区分开的男性。dMR均富含基因外显子,CpG岛和二价染色质,并映射到与心脏和免疫功能有关的术语中富含的基因。最后,在DS与TD样品中,与背景区域相比,与背景区域相比,与背景区域相比,比背景区域的比例更高。这支持了以下假设:表观遗传学可以反映DS(特别是CHD)中表型的变化。关键词唐氏综合症,先天性心脏缺陷,新生的血液点,DNA甲基化,全基因组甲基硫酸盐测序,表观遗传学,表观基因组全基因组关联研究,差异甲基化区域,NRBC,降压>甲基化
摘要:维甲酸受体(RAR)信号通路在大量器官和系统的形态发生中起着至关重要的作用,已经建立了将近30年。在这里,我们使用了一个时间控制的遗传消融过程来精确确定需要RAR功能的时间窗口。我们的结果表明,从E8.5到E9.5,RAR函数对于胚胎的轴向旋转,鼻窦静脉的外观,血管的建模以及前肢芽,肺芽,肺pancreatic芽,镜头,镜头和Otocyst的形成至关重要。他们还表明,E9.5至E10.5跨越了一个关键的发育时期,在此期间,气管形成所需的RARS,肺部分支形态发生,源自主动脉拱形的大动脉的模式,闭合光学纤维的闭合以及内耳人结构的生长以及内部耳朵结构的生长和面部过程。比较缺乏3个RAR的突变体的表型与被剥夺了全反式视网膜酸(ATRA)合成酶的突变体的表型确定心脏环是最早的已知形态发生事件,需要功能性ATRA激活的RAR信号传导途径。
语音晶体(PNC)表现出通常在天然材料中发现的声学特性,这导致了新的设备设计以进行声波复杂的操作。在本文中,我们报告了通过语音晶体中的线缺陷来构建微米尺度的语音波导,以实现片上紧密限制的引导,表面声波的弯曲,弯曲和分裂(锯)。PNC由定期镍支柱的平方晶格制成。它表现出一个完整的带隙,该带隙禁止在PNC内部锯的传播,但允许线缺陷内的传播。通过基于电镀的微生物制作过程,在128°Y型niobate底物上实现了波导。PNC晶格常数,支柱直径和支柱高度分别为10 𝜇𝑚,7.5 𝜇𝑚和3.2 𝜇𝑚。互插的换能器是单层整合在同一底物上的,用于195 MHz左右的SAW激发。通过使用扫描光学杂作干涉仪测量平面外表面位移场,可以通过测量平面外表面位移场来实验观察到语音波导中表面波的引导,弯曲和分裂。高频紧密限制的语音波 - 证明了精确的局部操作锯的可行性,这对于新兴的边境应用(例如基于声子的量子信息处理)至关重要。
使用说明 以下承保政策适用于 Cigna 公司管理的健康福利计划。某些 Cigna 公司和/或业务线仅向客户提供使用情况审查服务,并不作出承保决定。对标准福利计划语言和承保决定的引用不适用于这些客户。承保政策旨在为解释 Cigna 公司管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件 [团体服务协议、承保证明、承保证书、计划概要 (SPD) 或类似计划文件] 的条款可能与这些承保政策所依据的标准福利计划有很大不同。例如,客户的福利计划文件可能包含与承保政策中涉及的主题相关的特定排除条款。如果发生冲突,客户的福利计划文件始终优先于承保政策中的信息。在没有控制联邦或州承保要求的情况下,福利最终由适用福利计划文件的条款决定。在每个特定情况下,确定承保范围时需要考虑 1) 服务日期有效的适用福利计划文件的条款;2) 任何适用法律/法规;3) 任何相关附属源材料,包括承保政策;4) 特定情况的具体事实。每个承保申请都应根据其自身情况进行审查。医疗主任应在适当的情况下进行临床判断,并酌情做出个人承保决定。如果护理或服务的承保范围不取决于具体情况,则只有在根据适用承保政策中概述的相关标准提交请求的服务(包括承保诊断和/或程序代码)时,才会提供报销。如果因本承保政策未涵盖的疾病或诊断而开具账单,则不允许报销服务(请参阅下面的“编码信息”)。开具账单时,提供商
量子技术(包括通信、计算和传感)在很大程度上依赖于量子系统的特性(包括自旋和光子)来编码、处理和传输信息。纳米材料中的原子缺陷(例如金刚石纳米晶体和六方氮化硼 (hBN))代表了这些技术的有前途的平台。这些由晶格不规则性形成的缺陷中心在紧凑性、可扩展性和可集成性方面具有无与伦比的优势,使其成为先进量子设备的首选。然而,退相干和外部扰动带来的挑战限制了系统性能,仍然是重大障碍。
神经退行性疾病(NDDS)和其他与年龄有关的疾病已通过一组关键的病理标志在经典上定义。这些标志中的两个,细胞周期失调(CCD)和核质转运(NCT)缺陷,长期以来一直在争论为因果关系,在加速衰老的病理学中是因果关系。具体而言,已证明有丝分裂后神经元中异常细胞周期活化会触发神经元细胞死亡途径和细胞衰老。此外,已经观察到NCT在衰老和神经变性过程中逐渐失调,其中增加了核蛋白的亚细胞再分配(例如TAR DNA-结合蛋白43(TDP43))对细胞质的主要驱动力是许多NDDS的主要驱动力。然而,NCT缺陷的功能意义是作为病理学的主要驱动因素或后果,以及细胞周期机械的重新分布如何促进神经变性,尚不清楚。在这里,我们描述了对进口素β进口的药理抑制能够在丝分裂神经元细胞系和有丝分裂后原发性神经元体外扰动细胞周期机制。以核进口缺陷为特征的运动神经元疾病的NEMF R86S小鼠模型,进一步概括了有丝分裂细胞系中CCD的标志,在体外和有丝分裂后的原发性神经元中以及体内脊柱运动神经元中。观察到的CCD与NDDS中神经元细胞死亡和细胞衰老中观察到的转录和表型失调一致。在一起,这些证据表明,导致CCD的核进口途径受损可能是神经变性中病理学的常见驱动力。