安全性和保持高性能是锂离子电池运行过程中的关键考虑因素。快速充电通常会加速电池的退化,尤其是锂沉积和活性物质损失。本研究探讨了一种快速充电协议的设计策略,该策略考虑了电池单元之间的差异对可能影响退化的因素的影响。我们采用非侵入式多项式混沌扩展来确定每种退化条件的关键参数。我们探索通过调整最大 C 速率和电压等约束来减少电池退化。严格控制关键可调参数有助于显著减少退化因素的置信区间,从而缩短充电时间并最大限度地减少退化。我们的方法应用于 LiC 6 /LiCoO 2 电池的两种状态相关快速充电协议,表明在设计最大限度减少退化的充电协议时明确考虑不确定性的价值。© 2024 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据 Creative Commons 署名非商业性禁止演绎 4.0 许可证 (CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nd/4.0/) 的条款发布,允许在任何媒体中进行非商业性再利用、发布和复制,前提是不对原始作品进行任何形式的更改并正确引用。如需获得商业再利用许可,请发送电子邮件至:permissions@ioppublishing.org。[DOI:10.1149/1945-7111/ad76dd]
在飞机发动机系统中,嵌入在发动机中的传感器在飞行周期期间收集关键的操作数据,这对于预后和健康管理(PHM)框架至关重要。例如,在这项研究[1]中,作者引入了一个经过暂时快照数据训练的经常性神经网络,以得出指示发动机降解的状态向量。最近的进步导致在飞行操作过程中收购了连续CEOD(连续发动机操作数据),从而提供了更全面的数据集。CEOD包括由机板系统获得的多个传感器读数和计算输出以及随后处理的飞行后。利用此连续数据流显示了精炼算法以达到更高的精度和效率的潜力,从而克服了与使用快照数据相关的约束。值得注意的是,它在异常检测方法中发挥了作用[2]。我们的研究工作解决了两个主要目标。首先,它提出了一种用于使用CEOD的飞机发动机数据驱动的模拟器的方法。此模拟器模拟了真实飞机发动机的复杂动力学行为,从而在各种操作条件下(包括多样化的飞行机制和发动机控制)实现了复杂的模拟。此类模拟为影响发动机健康的各种因素提供了宝贵的见解。其次,它证明了该模拟器在物理引擎中观察到的降解过程中的实用性。所提出的应用程序代表了一个多功能算法框架,能够模拟飞机发动机并监视其
摘要 - 汽车行业已将基于传感器技术的自动车辆和主动安全功能确定为提高安全性,可持续性,加速性和效率的催化剂。随着技术的进步,这些系统的应用正在不断扩展。除了这些进步之外,必须开发方法来评估和测试以相关且可重复的方式评估和测试ADAS系统性能以及可靠性。这项工作概述了开发和评估生成道路喷雾的测试方法的主要挑战,这是细水颗粒的湍流混合物,可降低由潮湿表面上驾驶的车辆引起的可见性。设计和生产了硬件原型和附属评估过程,以实现测试方法。评估过程包括一种自动软件工具,以量化原型降低可见性的能力以及一种自动化传感器校准的方法,以在不同位置和时间收集数据。关键发现之一是消除测试环境中外部干扰的挑战。光和风条件等因素通过喷雾显着影响可见性。工作得出的结论是,控制这些因素对于实现测试可重复性至关重要。我们在受控环境中成功重新创建了道路喷雾剂,以多达80%的步骤削弱了传感器的感知能力,反复在±5-15%以内。索引术语 - 种植,水微粒,ADA,AD,自动化,可见性降解,传感器,对比度,感知,不利天气
在这里,推动力(F PR)是一个可控的组件,它源自通过电动机或制动器的传输系统。重力(F G)可能会导致加速或减速,具体取决于道路倾斜度;它的行为由(3)描述,其中g是重力加速度,θ是道路的角度。阻力和滚动电阻(分别为F阻力和F RR)是电阻力,始终作用于速度方向。阻力是由空气阻力引起的;它是通过(4)描述的,其中ρ是空气密度,A是车辆的额叶区域,C D是空气阻力系数。滚动阻力是由轮胎和道路之间的轮胎变形和摩擦引起的。它由(5)描述,其中c r是滚动电阻系数(Oliveira等,2023; Alcantara,2022)。f g = k m mg·sin(θ)(3)f drag = 1
氯离子电池(CIB)为锂离子系统提供了令人信服的替代方案,尤其是在要求成本效益和资源可持续性的应用中。但是,量身定制的电极材料的开发仍然是CIB进步的关键瓶颈。在这项研究中,我们首次通过轻松的机械化学途径合成了一类未开发的基于钙钛矿的材料含钾(K 2 SNCl 6,称为KSC)。制备的KSC经过各种表征技术,以确认其晶体结构和形态。在此,KSC利用锂金属计数器电极在非水CIB构型中表现出有趣的电化学性能。此外,Ex-Situ X射线衍射(XRD)和X射线光电子光谱(XPS)分析揭示了涉及氯离子穿梭的转化反应机制,并在循环过程中提供了对结构进化的见解。此外,密度功能理论(DFT)研究支持了其他降解产物,这些降解产物可能有可能限制这些材料的性能,从而限制了这些材料作为CIB中潜在电池电极的性能。
近年来,数据驱动的心脏声音分类模型的发展一直是研究的活跃领域。首先要开发此类数据驱动的模型,需要使用信号采集设备捕获心脏声音信号。但是,由于大多数情况下存在内部和外部噪音,几乎不可能捕获无噪声的心声信号。心脏声音信号中的这种噪声和降解可能会降低数据驱动分类模型的准确性。尽管文献中已经提出了不同的技术来解决噪声问题,但心声信号中的噪声和降解在何种程度上影响了数据驱动的分类模型的准确性,但仍未得到探索。为了回答这个问题,我们制作了一个合成心脏声音数据集,包括正常和异常的心脏声音,这些声音被各种噪音和降解污染。我们使用此数据集研究了心脏声音记录中噪声和降解对不同分类模型的性能的影响。结果显示出不同的噪声和降解在不同程度上影响心脏声音分类模型的性能。有些对于分类模型更有问题,而另一些则不那么破坏性。将这项研究的发现与我们先前与一组临床医生进行的调查的结果进行比较,表明对分类模型更有害的噪声和降解也更具破坏性对准确的听诊。这项研究的发现可以利用以发展有针对性的心脏声音质量增强方法 - 根据心脏声音信号中噪声和降解的特征,可以适应质量增强的类型和侵略性。
摘要:基于材料 - 排斥的3D打印与多乳酸(PLA)已改变了各种行业的轻量级晶格结构的生产。尽管PLA提供了诸如环保性,可负担性和可打印性等优势,但由于环境因素而导致其机械性能降低。这项研究研究了在室温,湿度和自然光暴露下造成物质降解的PLA晶格结构的影响。在Poisson的比例,poisson的比率和蜂窝的比例上,在泊松比,正对阴性(PTN)梯度方面进行了四种晶格核心类型(辅助性,负阳性(NTP)梯度,以及由于产量压力和失败菌株的下降而导致机械性能的变化。在各种屈服应力和失败应变水平下的机械测试和数值模拟评估了降解效应,并使用未基因的材料作为参考。结果表明,尽管物质减弱,但泊松比的结构对局部粉碎表现出了较高的抵抗力。与减少其屈服应力相比,降低材料的脆性(故障菌株)对影响反应的影响更大。这项研究还揭示了梯度核的潜力,梯度核心在中等降解(60%和80%的参考值下)(屈服强度和失败菌株)在中等降解(屈服强度和失败菌株)下表现出平衡(维持相似的峰值峰值力(保持相似的峰值峰值)和能量吸收(比辅助核高40%))。这些发现表明,使用辅助设计的泊松比的梯度结构对于在可变的环境条件下既需要强度和弹性的AM零件都是有价值的选择。
1坎皮纳斯大学(UNICAMP)的电气和计算机工程学院,Campinas 13083-852,巴西; carlos.rufino@carissma.eu(C.A.R.J.); m228835@dac.unicamp.br(M.M.A.)2在生物能源(USP/UNICAMP/UNESP)的机构间研究生课程,Cora Coralina街330号,CIDADE UNIVERSITÁRIA,CAMPINAS 13083-896,巴西3 Carissma Electric,Connectuction of Electric,Connected and Secutect and Secure Ebsibility and Secure Ebsibility(C-Ecos),TechnIsche Hochsche Hochschulany Ingololstadt,85049949999999.850499499999949949999.850949999994999.850499999996号。 daniel.koch@carissma.eu(D.K.); yash.kotak@carissma.eu(y.k。); sergej.diel@thi.de(s.d.); gero.walter@carissma.eu(g.w.); Hans-Georg.schweiger@thi.de(H.-G.S.)4巴勒莫大学(UNIPA)工程系,意大利巴勒莫90128; eleonora.rivasanseverino@community.unipa.it(E.R.S.); pierluigi.gallo@unipa.it(p.g.)5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni(CNIT),43124意大利帕尔马 *通信:hzanin@unicamp.br
1坎皮纳斯大学(UNICAMP)的电气和计算机工程学院,Campinas 13083-852,巴西; carlos.rufino@carissma.eu(C.A.R.J.); m228835@dac.unicamp.br(M.M.A.)2在生物能源(USP/UNICAMP/UNESP)的机构间研究生课程,Cora Coralina街330号,CIDADE UNIVERSITÁRIA,CAMPINAS 13083-896,巴西3 Carissma Electric,Connectuction of Electric,Connected and Secutect and Secure Ebsibility and Secure Ebsibility(C-Ecos),TechnIsche Hochsche Hochschulany Ingololstadt,85049949999999.850499499999949949999.850949999994999.850499999996号。 daniel.koch@carissma.eu(D.K.); yash.kotak@carissma.eu(y.k。); sergej.diel@thi.de(s.d.); gero.walter@carissma.eu(g.w.); Hans-Georg.schweiger@thi.de(H.-G.S.)4巴勒莫大学(UNIPA)工程系,意大利巴勒莫90128; eleonora.rivasanseverino@community.unipa.it(E.R.S.); pierluigi.gallo@unipa.it(p.g.)5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni(CNIT),43124意大利帕尔马 *通信:hzanin@unicamp.br