•影响很大,可能会影响2ndary药理学,细胞毒性,PPB和其他体外测定•可能需要评估从体外系统中的化合物恢复•增加筛查方法的成本和复杂性 - 平衡速度与准确性与准确性之间的平衡
诱导邻近靶向蛋白质降解 (TPD) 是近十年来出现的突破性药物研发策略。1–3 在 TPD 中,无法用药的致病蛋白质被招募并通过泛素-蛋白酶体途径快速破坏和消除,这是蛋白质降解和体内平衡的主要机制。1–5 泛素-蛋白酶体途径是细胞内务管理过程的一部分,通过酶级联发生,导致蛋白质泛素化和随后的降解。4,5 泛素-蛋白酶体系统 (UPS) 是细胞蛋白质降解和维持蛋白质体内平衡的主要机制,是细胞常规内务管理过程的一部分。因此,这意味着 TPD 应用的潜在广度几乎是无限的。UPS 过程涉及酶级联,导致目标蛋白质 (POI) 泛素化。
许多基本的生物过程都通过接近度调节,从膜受体信号传导到转录活性。泛素蛋白酶体系统以泛素连接酶为限制步骤来控制蛋白质降解。泛素连接酶通常在底物募集水平上受到控制,因此是通过接近度控制的。有天然和合成的小分子也通过诱导的接近性起作用。例如,沙利度胺可有效治疗多发性骨髓瘤,并作为一种分子胶,可稳定泛素蛋白连接酶和连接酶其他未针对的蛋白质之间的新型蛋白质 - 蛋白质相互作用,从而导致新的底物降解。关于新降级分子的新兴数据具有不同的机制,不同于分子胶,这些机制通常反映了控制自然界中底物 - 岩酶接近性的调节机制。在这篇综述中,我们总结了我们目前对蛋白质降解的生物学和合成调节的理解,并分享了我们对这些多样化机制如何启发新的治疗方向的看法。
Chen, J., Hou, S., Liang, Q., He, W., Li, R., Wang, H., Zhu, Y., Zhang, B., Chen, L., Dai, X., Zhang, T., Ren, J. & Duan, H. (2022)。通过光调节酶递送局部降解中性粒细胞胞外陷阱以用于癌症免疫治疗和转移抑制。ACS Nano,16(2),2585‑2597。https://dx.doi.org/10.1021/acsnano.1c09318
在没有硫酸盐的深海中,微生物从有机物中产生了大量的43甲烷。然而,ANME古细菌在SMTZ中消耗了超过80%的气体(21、31、56)。由于这种有效的微生物过滤器,只有2%的大气45甲烷来自海洋(56)。如果以气体水合物和永久冻土形式的甲烷46沉积物因气候变暖而不稳定(59),则该数字可能会增加。47取决于电子捐赠者和受体的通量,SMTZ发生在几十毫米的深处(例如冷渗水)至海床以下几百米(深缘49个沉积物)(31、34、58)。SMTZ的位置进一步取决于底物的数量和物理50个特征,系统的沉积物类型和动力学(7,63)。深SMTZ中的51个AOM速率较低,每天每52毫升的纳莫尔斯到少数纳莫尔斯的范围。因此,这些环境中的ANME细胞数量低53,<10 6细胞CM -3,而ANME -1型通常占上风(39,45,51)。如果存在,则在这些视野中也将短链54烷烃氧化(50,62)。55
在飞机发动机系统中,嵌入在发动机中的传感器在飞行周期期间收集关键的操作数据,这对于预后和健康管理(PHM)框架至关重要。例如,在这项研究[1]中,作者引入了一个经过暂时快照数据训练的经常性神经网络,以得出指示发动机降解的状态向量。最近的进步导致在飞行操作过程中收购了连续CEOD(连续发动机操作数据),从而提供了更全面的数据集。CEOD包括由机板系统获得的多个传感器读数和计算输出以及随后处理的飞行后。利用此连续数据流显示了精炼算法以达到更高的精度和效率的潜力,从而克服了与使用快照数据相关的约束。值得注意的是,它在异常检测方法中发挥了作用[2]。我们的研究工作解决了两个主要目标。首先,它提出了一种用于使用CEOD的飞机发动机数据驱动的模拟器的方法。此模拟器模拟了真实飞机发动机的复杂动力学行为,从而在各种操作条件下(包括多样化的飞行机制和发动机控制)实现了复杂的模拟。此类模拟为影响发动机健康的各种因素提供了宝贵的见解。其次,它证明了该模拟器在物理引擎中观察到的降解过程中的实用性。所提出的应用程序代表了一个多功能算法框架,能够模拟飞机发动机并监视其
与骑自行车相关的四个主要降解驱动器是:CD,C率,温度和SOC。更深的放电周期会导致电池老化更快。10,16在文献中,排放深度(DOD)用于电池的绝对放电水平(例如SOC + DOD = 100%),并且与可能与100%不同的起始SOC相比,放电的深度也是如此。我们宁愿将CD用于后一个含义。用10%CD的电池操作,而100%CD可以使周期增加100倍,总能量吞吐量更大。17 CD与锂离子电池老化之间的明显非线性关系通常在经济调度模型中不考虑。第二重要的骑自行车相关的老化驱动器是C率。它被定义为(DIS)充电电流除以额定的电池存储容量。较低的C率往往会导致电池老化较低。6在网格应用中,(dis)电荷电压被认为是固定的;因此,我们在1小时内表达相对于全(DIS)电荷的C率。 2
1坎皮纳斯大学(UNICAMP)的电气和计算机工程学院,Campinas 13083-852,巴西; carlos.rufino@carissma.eu(C.A.R.J.); m228835@dac.unicamp.br(M.M.A.)2在生物能源(USP/UNICAMP/UNESP)的机构间研究生课程,Cora Coralina街330号,CIDADE UNIVERSITÁRIA,CAMPINAS 13083-896,巴西3 Carissma Electric,Connectuction of Electric,Connected and Secutect and Secure Ebsibility and Secure Ebsibility(C-Ecos),TechnIsche Hochsche Hochschulany Ingololstadt,85049949999999.850499499999949949999.850949999994999.850499999996号。 daniel.koch@carissma.eu(D.K.); yash.kotak@carissma.eu(y.k。); sergej.diel@thi.de(s.d.); gero.walter@carissma.eu(g.w.); Hans-Georg.schweiger@thi.de(H.-G.S.)4巴勒莫大学(UNIPA)工程系,意大利巴勒莫90128; eleonora.rivasanseverino@community.unipa.it(E.R.S.); pierluigi.gallo@unipa.it(p.g.)5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni(CNIT),43124意大利帕尔马 *通信:hzanin@unicamp.br