摘要:随着电动汽车行业的发展,从车辆退休的电池数量正在迅速增加,从而引发了关键的环境和废物问题。从汽车中回收的第二寿命电池具有80%的容量,这是电网应用的潜在解决方案。为了充分利用二人电池,对其性能的准确估算成为优化成本效益的关键部分。尽管如此,很少有作品专注于二人电池应用的建模。在这项工作中,提出了一种通用方法,用于对电网系统应用的二人电池的性能建模和退化预测。所提出的方法将电池性能的电化学模型,健康估计方法和用于电网中应用程序应用的收入最大化算法。在不同的充电率和放电率下预测电池的降解。结果表明,电池的降解可以放慢速度,这是通过将电池数量并联连接在一起以提供相同量所需的电源来实现的。许多作品旨在优化新鲜电池储能系统(BESS)的运行。但是,很少有工作重点放在二人电池应用上。案例研究的结果表明,夏季针对TOU关税的套利是最佳选择,因为在相同的功率要求下,电池使用寿命较长。在这项工作中,我们在利用电池进行独特的操作策略(即套利和削减密歇根州的DTE电力公司的动态峰值定价(DPP)和使用时间(TOU)的使用(TOU)Pariffs Pariffs的情况下,我们提出了二人电池收入与使用寿命之间的权衡。随着退休电池数量将在未来10年内增加,这将使退休的电池所有者/采购者如何提高利用能力,同时使EV电池的循环经济更加可持续。
德克萨斯大学西南医学中心细胞生物学系 Kevin Mark 博士的实验室提供博士后培训职位,研究蛋白质质量控制和降解如何在发育过程中调节基因表达。Mark 实验室有几个令人兴奋的项目,涉及了解泛素-蛋白酶体系统靶向转录和翻译机制以影响细胞过程的机制,以及此类途径的破坏如何导致癌症和神经退行性疾病。博士后学者将有机会在令人兴奋、快速发展的生物医学科学领域工作,同时学习核酸和蛋白质生物学的最新方法。我们的实验室使用多种方法进行研究,包括基因组编辑、流式细胞术、共聚焦显微镜和蛋白质组学,以及标准生化技术,如克隆、免疫沉淀、蛋白质印迹和 RNAseq。博士后候选人将可以使用德克萨斯大学西南分校的众多共享设施,这些设施为高通量筛选、下一代测序、活细胞成像、质谱和低温电子显微镜 (cryo-EM) 提供支持。
R.P.L. Nijssen 摘要 风力涡轮机转子叶片承受大量高度可变的载荷,但寿命预测通常基于恒幅疲劳行为。因此,确定如何根据恒幅疲劳行为估算变幅疲劳下的使用寿命非常重要。寿命预测包含不同的元素:计数方法、描述 S-N 曲线的公式、恒定寿命图和损伤规则。对于损伤描述,研究并比较了两种模型,即 Miner 和法和基于强度的寿命预测。在 Miner 和法中,计数法和恒幅疲劳行为描述的结果被转换为损伤参数“Miner 和”。不考虑载荷顺序的潜在影响,损伤参数的值仅表示是否发生故障:它与物理上可量化的损伤无关。在基于强度的方法中,通过计算每个载荷循环对强度的影响来预测寿命,直到载荷超过剩余强度。这种循环方法的预期优势是可以隐式地包含序列效应。此外,损伤参数始终与物理上可量化的参数(即强度)相关。成功应用基于强度的方法需要描述疲劳后强度,这需要大量的ex
15. 补充说明由船舶结构委员会赞助。由其成员机构共同资助。16. 摘要先进复合材料制造技术的发展为聚合物基质复合材料在大型承重结构(包括船舶和码头和桥梁等土木工程结构)中的经济高效应用提供了清晰的前景。然而,聚合物基质复合材料在火灾引起的热负荷下会严重降解(损坏)。本报告描述了经过火灾降解的聚合物基质玻璃增强复合材料的压缩失效的实验和理论研究结果。我们的研究涉及单层和芯复合材料。实验研究是在大约 1 平方米的复合板上进行的。这些研究记录了面板在受到热(即火灾)负荷和平面内和平面外机械负荷时的结构坍塌。与分析建模同时进行的面板变形和坍塌的详细有限元模拟与实验观察结果非常吻合。在实验和分析的背景下,讨论了开发结构防火定量方法的方法。最后,提出了单板和芯板的简单设计方法,并讨论了实验结果和热边界条件。 17. 关键词 复合材料、热负荷、聚合物基复合材料 18. 分发声明 分发可通过以下方式向公众提供: 国家技术信息服务 美国商务部 Springfield, VA 22151 电话 (703) 487-4650
• 将水浴预热至 37 ± 2°C 以进行游离 DNA 降解步骤 • 将水浴预热至 95 ± 5 °C 以进行 DNA 提取步骤 • 准备与样品数量对应的 Cryotube TM 小瓶,在每个 Cryotube TM(游离 DNA 降解缓冲液)中移取 0.5 ml 激活缓冲液和 2 µl 游离 DNA 降解试剂 • 将所需数量的 DNApure 柱插入 1.5 ml 管(提供) • 所有离心步骤必须在室温下进行 1. 使用无菌镊子将过滤器折叠两到三次,以获得圆锥体,如图 1 所示 2. 将膜转移到含有游离 DNA 降解缓冲液的 Cryotube TM 小瓶中 注意:将膜过滤器插入小瓶时必须使圆锥体的尖端朝向 Cryotube TM 小瓶的顶部(图 1)
提出了一种令人兴奋的策略来克服这些挑战,因为它通过诱导细胞浆 POI 与细胞内蛋白质降解机制的相互作用来消耗目的蛋白质 (POI)。这种方法使 TPD 能够靶向缺乏有效小分子抑制剂的困难蛋白质,并且由于 TPD 分子的催化性质,可以在亚化学计量比下实现更高的功效。7 在过去的二十年里,各种 TPD 工具,如分子胶降解剂、8,9 蛋白水解靶向嵌合体 (PROTAC)、10-12 特定和非遗传 IAP 依赖性蛋白质擦除器 (SNIPER)、13 降解标签 (dTAG)、14,15 自噬靶向嵌合体 (AUTAC)16 和自噬体束缚化合物 (ATTEC)17 已经得到开发。令人鼓舞的是,沙利度胺(一种在临床上使用数十年的药物)被证明可以作为分子胶降解剂发挥作用;18 其他 PROTAC 和分子胶也已进入临床试验。11,19 所有这些都预示着 TPD 平台具有良好的治疗潜力。尽管取得了这些成功,但挑战依然存在。例如,TPD 平台主要依赖于小分子结合剂和细胞内泛素蛋白酶体系统 (UPS),这限制了它们的应用范围,这些蛋白质含有胞浆结构域和可用的结合位点。实际上,跨膜蛋白、分泌蛋白和缺乏合适配体结合位点的细胞内蛋白构成了大多数治疗相关靶点。20 创新技术没有使用小分子,而是利用肽、蛋白质和核酸等生物制剂作为具有挑战性的 POI 的靶向结合剂。第一个 PROTAC 分子实际上是一种由 IkBa 磷酸肽(DRHDpSGLDSM)组成的肽基配体,21 而另一种来自缺氧诱导因子 1 亚基 a(HIF1a)的肽也经常用作 E3 连接酶 von Hippel-Lindau(VHL)的结合剂。22,23 最近,更多基于肽的 PROTAC 已被证明可以成功诱导蛋白质的降解,包括 Akt、24 Tau、25a-突触核蛋白、26 PI3K/FRS2a 27 和 X 蛋白。28 核酸也被用作结合剂来开发 TPD 系统,例如转录因子靶向嵌合体(TRAFTAC)、29 基于寡核苷酸的 PROTAC(O'PROTAC)30 和转录因子 PROTAC。 31 还有针对 RNA 结合蛋白的 RNA-PROTAC、针对 G4 结合蛋白的 32 G4-PROTAC 和基于适体的 PROTAC。34 此外,最近出现的 LYTAC、35、36 AbTAC、37 PROTAB 38 和 KineTAC 39 均使用抗体或纳米抗体作为 POI 结合剂,利用溶酶体实现细胞外和跨膜蛋白的靶向降解。即使有了这些最新技术,仍存在一个主要障碍:生物制剂的使用主要限于细胞外或跨膜蛋白,因为生物制剂缺乏渗透细胞的能力。我们最近证明了使用基于细胞渗透性的纳米抗体的降解剂可以降解传统上“无法用药”的细胞内 POI;这项工作描述了一种可能克服这最后一项主要障碍的方法。40
抽象的肥沃和生产性土壤是一种有限,脆弱和宝贵的资源。土壤健康及其生产能力取决于土地使用和管理。Among primary causes of soil degradation are physical (decline of soil structure, crusting, compaction, hard-setting, erosion by water and wind, drought), chemical (salinization, acidification, elemental imbalance, nutrient depletion), biological (decline in soil organic matter content, decline in activity and species diversity of soil biodiversity, buildup of pests and pathogens) and ecological [(decoupling and disruption水的耦合循环和基本要素,例如N,P,S,Ca,Mg,K,Fe,Zn,Se,I,Mo)以及能量和水的失衡]。土壤退化也受到民间冲突和政治动荡的影响。的确,土壤健康是任何战争的受害者。基于炸药和重型设备的现代战争导致压实,碎屑,污染和污染,对食物质量和数量的不利影响及其营养成分产生不利影响。重金属(HG,PB,AS)对土壤的污染是对人和野生动植物的严重危害。恢复受污染和污染的土壤可能发生在十年和百年纪念尺度上。关于土壤和环境对人类健康和福祉的重要性,从幼儿园到小学和中学的课程需要变化。必须制定和实施土壤健康法,以保护和可持续管理宝贵的土壤资源。必须提高公众意识,即健康饮食作为医学的重要性。关键字:土壤退化,污染,污染,土壤健康,植物营养,人类营养,一种健康概念,土壤权利,土壤健康法,生态系统服务
•DNA标准的所有条(PUC19-SAU3A1标记)的所有条均已分级且清晰可见。•控制号1带强度比DNA标准的上条带的强度强(PUC19-SAU3A1标记); •控制号2个频带强度低于对照号1个带强度(观察到DNA的降解)或对照编号2条强度类似于控制号1个带强度(未观察到DNA的降解。•在电泳后,在凝胶中可见500 ng,1500 ng和2500 ng的DNA的样品
我感谢总数数字平台的团队,然后感谢我论文的工业部分发生的总素,无论是在纳米诺诺夫,游乐场,下一个还是情节。感谢您的所有这些日常交流,在各种项目演示会议或Mathias,以及咖啡馆甚至Mario Kart附近。我还要感谢Saft的BMM团队对我们曾经的电池的热情欢迎和教学法。尤其是我感谢所有博士生,我们的长老,优化专家Naoufal,向我们展示了路;巴蒂斯特,谢赫纳和阿明,我与他们一起开始论文; Yagnik,Ali,Elie和Nouha渗透到了这些日子,在面对面(和外部)中献出了生命,所有这些讨论以及这些令人兴奋的多元文化交流;还有瓦西尔,哈立德和阿玛尔;所有这些博士旅行伴侣。
使用代表10个被子植物家族的56个基因组敏捷的植物标本室DNA术语,发现重叠的读取对发生在大约80%的读取对中。合并了这种重叠对后,所得的片段及其长度分布被认为反映了实际的DNA碎片。类似于古代DNA中的发生,我们发现在标本室材料中碎片末端的嘌呤过分占代表性。碎片长度的分布适合伽马而不是指数分布,而与标本年龄显然相关。观察到的伽马分布将表明高阶降低动力学,这意味着在降解过程中起作用多种过程。可能,与非重复的植物基因组相比,此处使用的基因组掠夺数据,其中重复序列或隔室具有过多的代表性,具有偏见的基因组片段长度分布和半衰期,但没有可用的数据可用于检验该假设。总体而言,我们的结果表明,我们无法确认是否存在植物档案DNA半寿命以及其速率是多少。