2025年秋季的课程基于行业反馈,内容涉及为行业专业人员提供更多机器人培训机会,尤其是在FANUC机器人的情况下,因为它们是该地区的主要供应商,用于物料处理机器人。课程修改Arch 011:建筑设计2一个高级课程,该课程继续探索入门课程中发起的问题。此外,该课程强调了计划的开发,站点和上下文分析,先例研究和结构,作为创造建筑形式和空间的手段。设计项目是利用“触觉”(手工)的两维视觉交流和规模建模技术提出的。为了交流设计和预期概念的目的,还需要以批评形式的口头演示。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 30 日发布。;https://doi.org/10.1101/2024.12.30.630761 doi:bioRxiv preprint
然后使用“PEG 方法”将经过验证的 RNP 复合物(由单个 gRNA 和 [ ] 组成)转染到番茄原生质体中,该方法使用聚乙二醇促进 RNP 进入原生质体(Maas & Werr,1989)。进入细胞后,RNP 复合物被运输到细胞核并到达 gRNA 指示的特定目标。一旦达到目标序列,CRISPR-[ ] 酶将在 DNA 中产生双链断裂 (DSB)。当植物细胞修复断裂时,DNA 链中产生的单个断裂将重新连接,有时会导致 DNA 序列的缺失。几天后,RNP 复合物中的 CRISPR-[ ] 蛋白和 gRNA 将被植物细胞分解。
USDA先前已经通过空气过程在此RSR中使用与PTMO相同的表型评估了PennyCress线。在相同的生物合成途径中包含基因(AOP2,[])中的破坏的线,在其中一些和其他空气请求中评估了与我们的其他编辑[]的表型相同的表型[]。aop2,[]是几种基因的例子,这些基因在破坏时会降低pennycress中的葡萄糖苷水平。此RSR要求对pennycress进行评估,并在其他基因中使用突变,从而导致相同的低葡萄糖苷表型,[]。响应于几个先前提交的空气信件中的每一个,BRS放大了带有AOP2,[]和其他基因中断的Pennycress线,结论是:“……您的基因组编辑的Pennycress系列本身并不是植物的植物”。USDA在几封空气响应信中还指出,根据7 CFR第360部分,Pennycress不会被列为联邦有害杂草,而USDA没有理由相信PennyCress线的预期表型会增加pennycress的杂草。
D.基因编辑引入的性状的描述是除草剂抗性。通过使用碱基编辑器的特定碱基转变到O. sativa和T. aestivum的HPPD蛋白中产生的突变(Zong等,2018)。此外,由于对HPPD抑制除草剂的敏感性降低而获得了突变的HPPD酶。例如,获得了源自假单胞菌菌株A32的HPPD突变体G336W(Matringe等人。2005)。 活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。 另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。 2014; Siehl等。 2014)。 该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。 基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。 2018)。 尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。 靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。 将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。2005)。活性位点的这种单个氨基酸变化导致对Isoxafutole的敏感性降低,并对HPPD酶活性产生中等影响。另一个例子是从燕麦(avena sativa)获得的HPPD同工酶(称为AVHPPD-03),该酶显示出对中酮的耐受性(Kramer等人。2014; Siehl等。2014)。该同工酶在N末端结构域中具有单个氨基酸缺失(A111)。基因(PFHPPD W336和AVHPPD-03)已成功地用于开发转基因作物,例如大豆和棉花(Dreesen等。2018)。尤其是在大米中(Hawkes等,2019)报告说,大米HPPD基因中突变的组合V225i,A334R,R347E,L3666M,L3.66m,提高了对HPPD活性的降低,可以提高对除草剂甲氟酮和Isoxaflutole的耐受性。靶向基因组编辑的基因是HPPD [],它编码为4-羟基苯基丙酮酸二加氧酶(EC 1.13.11.27)编码,该酶催化了酪氨酸分解代谢途径的第二步。将4-羟基苯基丙酮酸(HPP)转换为同型,这是质喹酮和生育生物合成的前体。hppd是来自不同化学家族的除草剂的靶位部位,例如依氧唑(isoxaflutole和pyrasulfotole),吡唑酮(topramezone)和triketones(Mesotrione,Bicyclopyrone和tembotrione)(Lee等人)(Lee等人,1998年)。用这些除草剂治疗后,由于胡萝卜素合成的丧失,易感植物表现出漂白症状,并最终导致细胞膜的脂质过氧化。
当前市场上销售的伪狂犬病毒(PRV)疫苗的免疫保护效果逐渐降低,并未能对新型PRV变种提供完全保护。本研究利用CRISPR/Cas9和Cre/LoxP基因编辑系统及低熔点琼脂糖纯化法,同时敲除三种主要毒力基因(gE/gI和TK),成功构建了三基因删除活毒株rZDΔTK-gE-gI。接种rZDΔTK-gE-gI PRV候选疫苗的3周龄仔猪在感染PRV强毒株后均存活,且未出现任何临床症状,而所有未接种疫苗的仔猪均出现PRV呼吸道和神经系统症状,感染后7天内死亡率100%。 rZDΔTK-gE-gI候选疫苗在接种仔猪后诱导出高水平的抗gB抗体,其免疫保护效果优于经典毒株Bartha-K61。因此,三基因缺失活PRV候选疫苗有望控制目前由PRV变异株引起的伪狂犬病疫情。
发现有选择地利用特定肿瘤抑制剂遗传不活性的目标疗法仍然是一个主要挑战。这说明了CDKN2A / MTAP基因座的普遍缺失,该基因座最初是在大约40年前报告的。RNA干扰和功能性基因组筛查技术的最新出现导致癌细胞中MTAP的乘客缺失发生了隐藏的侧支致死性。尤其是,小分子对II型抗甲基转移酶PRMT5和S-腺苷甲硫代产生的酶MAT2A的抑制作用均为肿瘤患者的治疗方法进行精确的医学方法,其肿瘤的治疗方法是MTAP的巨额损失。在这种情况下,我们重点介绍了MTAP,PRMT5和MAT2A生物学的关键方面,以提供一个概念框架,以在具有MTAP缺失的肿瘤中开发新的治疗策略,并总结为吸毒PRMT5和MAT2A的持续努力。
2020 年 6 月 16 日 Bernadette Juarez APHIS 副局长 生物技术监管服务部 4700 River Road, Unit 98 Riverdale, MD 20737 主题:确认使用 CRISPR/Cas9 开发的低 PPO 鳄梨不是管制物品 尊敬的 Juarez 女士, JR Simplot 公司的植物科学部门(Simplot)恭敬地寻求生物技术监管服务部的确认,使用 CRISPR/Cas9 开发的低 PPO 鳄梨(Persea americana Mill.)不符合 7 CFR 第 340 部分对管制物品的定义。美国农业部之前已审查了一种树木作物苹果(Malus × domestica)的低 PPO 性状,并确定经过基因改造以降低多酚氧化酶的不变色苹果不太可能对植物造成有害生物风险 1,2。Simplot 已经开发出一种核糖核蛋白 (RNP) 方法,可以将 CRISPR/Cas9 元素递送到植物细胞中。该方法导致目标基因的等位基因内出现双链断裂,并敲除 [ ] Ppo [ ] 中的两个等位基因。最终选定的品系不包含任何来自 CRISPR/Cas9 的引入 DNA。使用此方法,基因编辑是通过用核糖核蛋白 (RNP) 复合物转染鳄梨原生质体细胞来实现的,该复合物由纯化的 CAS9 蛋白与合成向导 RNA (gRNA) 结合而成 (Andersson et al., 2018)。鳄梨不是植物害虫,也不会成为杂草。低 PPO 鳄梨没有引入植物害虫序列,RNP 方法中也没有使用任何此类序列。与传统鳄梨相比,使用 CRISPR/Cas9 开发的低 PPO 鳄梨不太可能成为植物害虫或具有改变的杂草潜力。因此,低 PPO 鳄梨不符合 7 CFR 第 340 条规定的受管制物品的定义。