1.1 Basic Parameter Configuration ................................................................................................. 3 1.2 OOK Demodulation Configuration .............................................................................................. 4 1.3 FSK Demodulation Configuration ............................................................................................... 5 1.4 CDR Parameters and CDR Mode ................................................................................................. 6 1.5 Register Classification and Usage in the Tx Bank ................................................................ 10 2.Revise History ..................................................................................................................................... 12 3.Contacts ............................................................................................................................................... 12
MaxRC(最大比率合并)是一种独特的解调技术,在 NLOS(非视距)条件下,当与分集配置中的多个天线一起使用时,可以创造强大的优势。该技术分析每个天线输入,然后纠正由于天线去相关而导致的多个输入的任何相位关系。然后,它将比例幅度组合起来,以聚合链路内的能量。在单个天线输入上聚合的能量称为分集改进因子。该因子的范围可以从两个天线输入的 4 dB 一直到六个天线输入的 11 dB,具体取决于天线输入的数量和天线输入的多径信道特性。MRC 已在其 DVB-T、LMS-T 和 SCM 解调平台中实施了 Max RC。
IV单元车辆无线技术和网络9 0 0 9无线系统框架图和组件的概述,传输系统 - 调制/编码,接收器系统概念 - 解调/解码,无线网络,对车辆自治的应用以及应用于车辆自治,计算机网络的基础知识 - 事物网络,无线网络和无线网络和划分无线网络和divairnation and difcompants of Wieling Networking and divalsing
在数字通信系统中,数字信号都是通过调制作用才能在高频段进行无线传输的。在实际应用中,调制方式的选择不仅能实现信息的快速传输,还能适应实际信道的干扰,在解码时获得较低的误码率,增加通信系统的抗干扰能力和可靠性。所以说,在数字通信系统的设计中,选择哪种数字调制方式是一个重要的问题。下面将对几种常用的调制方式进行研究,并通过比较和仿真来选择出符合系统要求的数字调制方式和通信台站。调制方式可分为模拟调制和数字调制,数字调制通常是指采用数字信号对射频载波进行调制,这种调制方式相对于模拟调制,具有抗干扰能力强、处理和加密方便等显著优点。数字调制与模拟调制类似,也可以对射频载波的幅度、相位和频率进行调制,但由于信号不连续,因此分别称为幅度键控(ASK)、相移键控(PSK)、频移键控(FSK)等。ASK具有恒包络信号的特性,不适用于数字信号调制。
精心实施 DSP 技术可显著减少无线电内的元件数量。这可提高可靠性并降低物流成本。所有调制和解调过程均使用 DSP 算法进行,这些算法可提供一致的长期性能,从而进一步提高设备可靠性。无线电内的所有可调参数均可使用前面板控件进行修改,或通过连接到耳机/诊断端口的计算机进行修改,从而无需在无线电使用寿命期间拆除设备盖。
part-B:使用Scilab/Matlab/simulink或LabView1。模拟NRZ,RZ,半鼻涕和凸起的余弦脉冲,并生成二进制极性信号传导的眼图。2。模拟脉冲代码调制和解调系统,并显示波形。3。模拟QPSK发射器和接收器。绘制信号及其星座图。4。通过模拟二进制DPSK的非连锁检测来测试二进制差分相移键系统的性能。
推荐书籍: [1] Wai-Kai Chen,“VLSI 技术(工程原理与应用)”,CRC press,2003,第 1 版,ISBN:978-0849317385。 [2] Kwyro Lee、Michael shur、Tor A. Fjeldly 和 Tron Ytterdal,“VLSI 的半导体器件建模”,Prentice Hall,1997,第 1 版,ISBN:978-0138056568。 ECE 505:高级数字通信 学分:2.00 学习时间:2 小时/周 概率与随机过程回顾。无记忆信道上的功率谱与通信:同步数据脉冲流的 PSD、M 元马尔可夫源、卷积编码调制、连续相位调制、无记忆信道上的标量和矢量通信、检测标准。相干和非相干通信:相干接收器、WGN 中的最佳接收器、IQ 调制和解调、随机相位信道中的非相干接收器、M-FSK 接收器、瑞利和莱斯信道、部分相干接收器 – DPSK、M-PSK、M-DPSK、BER 性能分析。带限信道和数字调制:眼图、存在 ISI 和 AWGN 时的解调、均衡技术、IQ 调制、QPSK、O/4-QPSK、QAM、QBOM、BER 性能分析、连续相位调制、CPFM、CPFSK、MSK、OFDM。块编码数字通信:结构和性能、二进制块码、正交、双正交、超正交-香农信道编码定理、信道容量、匹配滤波器、扩频通信概念、编码 BPSK 和 DPSK 解调器、线性块码、汉明、戈莱、循环、BCH、里德-所罗门码。卷积编码数字通信:使用多项式、状态图、树形图和网格图表示代码,使用最大似然、维特比算法、顺序和阈值方法的解码技术 - BPSK 和维特比算法的误差概率性能。
思维是人类大脑活动之一,被称为脑电波,其本质是大脑神经元发出的电脉冲。思维的特性与量子纠缠的特性高度相似且密切相关,如叠加性、非局域关联性、瞬时连接性、一元性等。脑内振荡电脉冲经过放大、调制、量子纠缠等一系列转换,被转换成携带大脑活动信号的量子纠缠电磁波,即携带思维活动信号的载波。载波可以在自由空间中传输,无论距离多远,都可以在其他地方通过解调来检测、记录和检索原始的大脑活动数据,因此生前思维可以永久保存。
摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。