该研究的目的是通过对基台适应程度的体外研究来评估可移动部分义齿中数字印象的精度。肯尼迪III类模型,在43和47元素之间具有假肢空间,分别在米西奥 - 胶囊和扣带区域中具有壁ni。在亚组浓度和conm中进行了常规印象,而数字扫描是在DIGC和DIGM中进行的。使用石膏和树脂型号上的蜡技术制造了简化的钴 - 铬合金框架。通过用冷凝硅硅硅酮打动壁ni,定性评估穿孔,并在横截面后立体显微镜下定量测量霉菌厚度来评估结构的适应程度。常规适应性在实验组中更为普遍。conce显示出较高的平均基台适应程度,而conm的平均值较低。研究因素,印象技术和基台座椅的类型在统计学上没有显着意义,并且变量之间没有相互作用。咬合和扣带式基台测量点没有统计学上的显着差异。数字扫描在基台适应方面产生了更好的结果,基台座椅和金属结构之间的平均间隙较小,因此在临床上可以接受。基座座和印象技术的类型对基台适应没有统计学上的显着影响。印象技术并不代表影响不同测量点上咬合和扣带扣基台适应的因素。
Block Dental 精算师针对不同客户群体及其损失率开展了一项研究。我们使用提供的区间间隔,根据损失率、净牙科续保增长和平均群体规模分析数据。通过这些分组,我们考虑了两种策略:通过大幅提高高损失率群体的保费成本来实现利润最大化;另一种策略是通过小幅提高高损失率群体的保费成本来实现收入最大化。本研究的结果用于根据区间确定每个群体的续保率增长。最终,这些续保率增长在三年内将目前约 88% 的损失率降低至 70%。
纽约州牙科杂志国际临床牙科杂志Turkiye Klinikleri。discimligi bilimleri dergisi印度正畸学会杂志,《牙周论与植入杂志杂志》
牙科修复治疗实践包括永久性和临时性填充材料、粘合系统、预防性应用、高速旋转工具以及用于腔体准备的手动工具。8 在他们的研究中,Zakeri 等人 9 分析了牙科中使用的高速旋转工具与牙齿和修复材料接触时的声音,并研究了这些声音的区别。在该研究中,汞合金和复合材料被用作修复材料,旨在帮助牙医防止在去除修复体过程中牙组织物质意外流失。Aliaga 等人 10 尝试使用他们开发的 AI 模型来确定最适合腔体的修复材料(汞合金或复合材料),该模型使用他们对过去几年进行的修复治疗的分析和放射学信息开发。在另一项研究中,开发了全景X光片(PR)中牙齿修复体的检测和分类模型,确定了83个PR中的11种修复体,发现该模型的修复体检测率为94.6%。11 在另一项研究中,结合反向传播和遗传算法方法,开发了一种可以在牙齿修复体中使用的材料与自然牙齿颜色匹配方面提供更准确估计的方法。12
社区财富建设中央探视计划城市年丹佛市丹佛市的衣服给丹佛法典的孩子们出版的科罗拉多州科罗拉多州科罗拉多州儿童科罗拉多州科罗拉多州科罗拉多州科罗拉多州科罗拉多州的商业委员会律师和政策公平经济流动性启动倡议科罗拉多州科罗拉多州科罗拉多州科罗拉多州科罗拉多州移民范围的科罗拉多州和野生动物群落典范科罗拉多州劳动力发展委员会科罗拉多州科罗拉多州年轻领导人科罗拉多州青年在风险上科罗拉多州青少年社区社区影响社区影响基金社区外展服务中心Concivir Colleado Colorado Colorado Colorado通过授权克服暴力(Dove)Delta Gamma盲人儿童丹佛儿童丹佛儿童丹佛儿童基金会丹佛家庭基金会丹佛家庭研究所丹佛印度家庭资源中心丹佛家庭资源中心DENVER DENVER DENVER DENVER DENVER DENVER DENVER PARK DENVER PARK DENVER PARK DIV/DIV
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
登革热是一种复杂的arboviral疾病,可能在15世纪至17世纪在非洲的奴隶船上在美洲引入了美洲。登革热病毒(DENV)具有四种不同的亚型DENV1-4,属于Flaviviridae家族Flavivivirus属。严重的病例可以演变成登革热的出血热和登革热综合征,这些综合征通常是致命的,迄今为止尚无有效的治疗。近年来,全球报告了登革热病例的数量急剧增加,每年估计有1亿案病例,预计每3 - 4年一次爆发一次(1)。与全球情景有关的这种形成鲜明对比,与缺乏登革热疫苗可用性(2)来应对这种免疫接种需求。在我们的研究中,我们研究了当前的疫苗开发挑战,从知识治理的角度讨论了技术策略和生产规模,以克服这种僵局。最近在拉丁美洲和加勒比海国家的登革热爆发螺旋出现了很好的说明,案件和死亡人数的迅速增加。尽管以前成功地根除了伊德斯埃及埃及蚊子,但到1962年在美洲的18个国家 /地区,由于构想良好的大陆计划(1947-1970),但从1971年到1999年,蚊子的重新生产和恢复原状完全改变了该地区的流行病学情景。在巴西和拉丁美洲国家中已有近80%的全球案件报告。这些多方面因素已导致媒介的脱位和受感染的人群的发展自2023年初以来,巴西经历了严重的爆发,影响了巴西大多数国家,卫生部长从2024年1月至2024年6月,卫生部长报告了630万例登革热病例(DF)案件,数十年来最高的历史记录(3)。尽管如此,重要的是要强调,尽管在热带地区,这种流行病的集中度,但不应将登革热视为热带地区的独有。Aedes reintroduction and DF outbreak spirals in the Americas and other continents have been attributed to complex interactions of herd immunity with climatic and eco-social determinants, i.e., global warming, El Niño, accelerated urbanization, travel, migration, poverty, lack of basic sanitation, deforestation, and low priority given to vector control activities ( 4 ).
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
水对于地球上的所有生命都是必不可少的,是最常见的液体。However, its behaviour is unique exhibiting a range of anomalous properties, including increased density upon melting, a density maximum at 277 K (4 °C), reduced viscosity under pressure at below 306 K (33 °C), high surface tension, and decreased isothermal compressibility and heat capacity with the temperature at ambient conditions, with minimum values at 319 K (46 °C) and 308 K (35 °C), 分别。[1]已经提出了在热平衡上竞争的两个竞争氢键组织的假设来解释这种行为。[2]这两个组织表现为两个阶段,即高加密液体(LDL)和高密度液体(HDL),在超冷方案中。[3]然而,尽管在水中出现了最近可能的伪相图,但在环境条件下,这两个不同的结构组织的存在及其含义仍然难以捉摸和有争议。[2]在这里,我们展示了NAYF 4:YB/ER上转换纳米粒子(UCNPS)的实验测量如何通过在水平条件下通过上转化的液化液体测量法分散在水中的某些假设。该方法可以使用不同尺寸的UCNP评估液体水中LDL基序的尺寸分布,从而通过简单地改变水性悬浮液的pH来模仿压力对氢键网络的影响,从而在环境条件下工作的好处。[4]这种实验方法提供了一种新的方法来研究水的两态模型,并通过检查环境条件对UCNP的运动的影响,例如不同的pH值和溶剂,从而更深入地了解液态水中氢键的组织。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
