利用免疫系统治疗恶性肿瘤已成为癌症疗法的强大工具,近年来,FDA批准的免疫疗法爆炸了。作为针对肿瘤的细胞毒性活性的主要介质,CD8 T细胞是当前治疗的重点,例如免疫检查点抑制(1),CAR-T细胞疗法(2)和癌症疫苗(3)。有效的CD8 T细胞反应的产生是一个复杂的过程,涉及免疫系统的多个组成部分。树突状细胞(DCS)在有效的CD8 T细胞反应对肿瘤的策划中起着核心作用(4,5)。在最基本的水平上,T细胞介导的抗癌免疫反应集中在DC抗原表现周围。此过程始于肿瘤衍生的抗原的直流捕获,这些抗原被细胞内载于MHC分子。然后将这些肽MHC复合物(PMHC)转运到细胞表面,以启动并激活肿瘤流血淋巴结内的效应T细胞。虽然在DCS Primes CD8 T细胞上加载到MHC I类分子上的抗原,而MHC II类分子对抗原的呈现可以启用CD4 T助手(Th)细胞。“ CD4帮助”,特别是
摘要:磷酸二酯酶4(PDE4)的抑制剂是小分子药物,通过增加免疫细胞中cAMP的cAMP水平,引起了广泛的抗炎性效果。因此,PDE4抑制剂被积极地研究为以潜在炎症发病机理为特征的多种人类疾病中的治疗选择。树突状细胞(DC)是炎症和免疫反应的检查点,根据其激活状态而导致激活和衰减负责。本评论显示了证据表明,PDE4抑制剂通过减少炎症和Th1/Th17偏振细胞因子的分泌来调节炎症性DC激活,尽管尽管保留了共拟合分子的表达以及CD4+ T细胞激活潜力。此外,在存在PDE4抑制剂的情况下激活的DC会诱导效应T细胞的优先Th2偏斜,保留了Th2吸收趋化因子的分泌并增加T细胞调节介质的产生,例如IDO1,TSP-1,TSP-1,VEGGF-A,VEGGF-A和amphiregulin。最后,PDE4抑制剂选择性地诱导表面分子CD141/血栓瘤蛋白/BDCA-3的表达。这种细胞调整的结果是免疫调节的DC,与经典抗炎药物(如皮质类固醇)诱导的DC不同。将讨论对PDE4抑制剂治疗呼吸疾病(例如COPD,哮喘和COVID-19)的可能影响。
特异性和注释DC-SIGN是一种跨膜受体,在树突状细胞和巨噬细胞表面表达。它参与了先天的免疫系统,并认识到从寄生虫到病毒的许多进化发散的病原体。蛋白质被组织成三个不同的结构域:N末端跨膜结构域,串联重复的颈域和C型凝集素碳水化合物碳水化合物识别结构域。由C型凝集素和颈部结构域组成的细胞外区域具有双重功能,是病原体识别受体和细胞粘附受体,通过结合微生物和内源细胞表面上的碳水化合物配体。颈部区域对于同型寡聚很重要,这使受体能够结合较高亲和力的多价配体。
反向传播是培训神经网络的基础算法,也是深度学习成功的关键驱动力。然而,由于现有文献所强调的,由于三个方面的限制,其生物学上的合理性受到了挑战:体重对称性,对全球误差信号的依赖和训练的双相性质。尽管已经提出了各种替代学习方法来解决这些问题,但大多数要么无法满足同时发生的所有三个标准,要么无法降低结果。受到金字塔神经元动力学和可塑性的启发,我们提出了树突局部学习(DLL),这是一种旨在克服这些挑战的新型学习算法。广泛的经验实验表明,DLL满足生物合理性的所有三个标准,同时在满足这些要求的算法中实现最先进的性能。此外,DLL在包括MLP,CNN和RNN在内的一系列架构中表现出强烈的概括。这些结果是针对现有的生物学上合理学习算法的基准,为未来的研究提供了有价值的经验见解。我们希望这项研究能够激发用于培训多层网络的新生物学合理算法的发展,并在神经科学和机器学习方面发展进步。
本质上,大多数已知的对象只有在超分子自组装中,例如蛋白质复合物和细胞膜。在这里,出现了树突状聚合物,该聚合物只有在自组装成二维超分子聚合物(2D-Suprapol)时,才抑制具有不可逆(病毒)机制的严重急性呼吸综合征2(SARS-COV-2)。单体类似物只能可逆地抑制SARS-COV-2,从而使该病毒在稀释后恢复感染性。组装后,2D-苏普醇在体外表现出显着的半抑制浓度(IC 50 30 nm)和叙利亚仓鼠模型中的体内具有良好的效果。使用冷冻-TEM,可以证明2D-Suprapol具有可控的侧向尺寸,可以通过调整pH值并使用小角度X射线和中子散射来调整,以揭示超分子组件的结构。提出了这种功能性的2D-Suprapol及其超分子结构,作为预防性鼻喷雾剂,可抑制病毒与呼吸道的相互作用。
1 蓝脑项目,洛桑联邦理工学院 (EPFL),Campus Biotech,1202 日内瓦,瑞士。 2 马德里理工大学和卡哈尔研究所 (CSIC) 皮质卡哈尔电路实验室,Pozuelo de Alarc´on,马德里 28223,西班牙 3 洛桑联邦理工学院 (EPFL) 大脑思维研究所拓扑学和神经科学实验室,洛桑 1015,瑞士 4 阿姆斯特丹自由大学神经基因组学和认知研究中心综合神经生理学系,阿姆斯特丹 1081 HV,荷兰 5 洛桑联邦理工学院 (EPFL) 神经微电路实验室,洛桑 1015,瑞士 6 沃州大学医院中心神经外科临床神经科学系,洛桑,瑞士 7 精神病学系精神神经科学中心,瑞士洛桑洛桑大学医院中心 8 耶路撒冷希伯来大学神经生物学系和 Edmond 和 Lily Safra 脑科学中心,9190501 耶路撒冷,以色列
扩散限制聚集(DLA)由于其简单性和在诸如纳米和微粒聚集等物理学中的广泛应用而引起了很多关注。在这项研究中,DLA的算法用Python编写。Python的Turtle库用于在计算机监视器上生长时绘制骨料。该算法在Raspberry Pi上运行。为DLA模拟创建了便宜的便携式介质。将两个不同的选项放在算法中。第一个路径不允许主粒子在碰撞后转动骨料外。但是,第二个允许骨料内外的主要粒子的渗透。通过算法获得由500-2000个主要颗粒组成的球形树突结构。这些结构的分形维度约为1.68。发现其孔隙率低于50%。还计算出回旋半径。除了科学研究之外,还提供了使用这些树突结构的算法艺术的例子。©2023 DPU保留所有权利。关键字:扩散限制聚合;随机步行;分形维度;孔隙率;覆盆子pi;算法艺术
简介:免疫检查点阻断(ICB)治疗,该治疗阻断了抑制性T细胞检查点分子,例如编程细胞死亡蛋白1(PD-1)和细胞毒性T淋巴细胞相关蛋白4(CTLA-4)具有革命性的癌症治疗。尽管具有功效,但一半的接受治疗的患者反应良好,治疗后经历了疾病的进展。为了进一步改善免疫疗法结果,需要更好地了解免疫景观和肿瘤微环境(TME)。在这种情况下,树突状细胞(DCS)是一种功能多样的抗原呈递细胞系统,在ICB治疗期间通过诱导DE NOVO CD8 +细胞毒素和CD4 + Helper T细胞对癌症特异性抗原的诱导,在ICB治疗期间发挥了抗肿瘤反应的工具作用。但是,对于驱动有效T细胞免疫至关重要的特定DC特征以及组织中的子集成分如何影响对治疗的反应性。
摘要。癌症免疫疗法激活了针对肿瘤细胞的宿主免疫系统,并有可能导致开发癌症治疗的创新策略。新抗原是由肿瘤细胞中的基因突变产生的非自身抗原,可诱导没有中央免疫耐受性的肿瘤细胞的强烈免疫反应。随着新抗原分析技术的进步,重点是新抗原的疫苗的开发正在加速。虽然有各种新抗原疫苗的平台,但共同开发了合成长肽,mRNA和基于树突状疫苗(DC)的疫苗的临床应用。个性化的基于DC的疫苗不仅可以加载包括新抗原在内的各种抗原,而且有可能引起T细胞中作为抗原呈递细胞的强烈免疫反应。在这篇综述中,我们描述了新抗原的特性和DC的基本特征。我们还讨论了新抗原疫苗的临床应用,重点是基于DC的个性化疫苗,以及未来的研发方向和挑战。近年来,免疫疗法引起了人们的注意,作为消除恶性肿瘤的新方法。T细胞表面上的免疫检查点在