成像方式如今已成为医学中必不可少的诊断工具。从 2009 年到 2019 年,美国的 CT、MRI 和 PET 检查数量分别增加了约 18%、42% 和 105%(1)。这种不断增长的需求已经超过了实际供应,导致法国/欧洲的 MRI 和 PET 扫描不合理地延迟了数周甚至数月(2)。适当的图像去噪可能有助于减少扫描时间,甚至减少 PET 的注射剂量。它可以增加检查次数,而不会影响太多工作时间或需要安装新的医学成像设备。深度学习作为人工智能 (AI) 的一个分支,可以构建有前景的去噪模型。我们专注于 PET 成像,因为它的扫描时间较长,因此去噪效果会更好。尽管许多研究实际上都在研究这种方法的临床表现,但它也可能影响其他新兴领域,如基于成像的预测模型、放射组学和其他 AI 应用 (3)。医学图像基本上是基于其密度 (CT)、磁性 (MRI) 或功能信息 (PET/SPECT) 的不同灰度级的视觉表示。灰度值的分布表征了信息的异质性。一个快速发展的领域称为放射组学,它提供了一种从图像中提取基于强度、形状、纹理的不同特征的方法,以构建预测模型 (4)。这种方法有望预测患者的结果。它们可能允许个性化治疗。例如,在肺癌中计算了一个包括放射组学特征的总体生存预测模型(5)。2013 年至 2018 年间,该领域的发表论文年增长率为 177.82%(6)。这些模型非常有前景,但仍需付出一些努力才能在常规临床环境中转化和实施它们(7)。人工智能在医学成像领域的应用尚处于早期阶段。在本文中,我们使用了深度学习,更具体地说是卷积神经网络方法,它们代表了人工智能技术的一个细分领域。如今,深度学习在图像重建、处理(去噪、分割)、分析和预测建模中发挥着关键作用。这些应用在未来将得到进一步发展(8)。在大多数这些任务中,它们的表现往往优于更传统的方法 ( 9 )。将这种基于 AI 的 PET/MR 去噪算法与临床数据进行比较,发现对比度与噪声比增加了 46.80 ± 25.23%,而仅使用高斯滤波器的对比度与噪声比仅为 18.16 ± 10.02%(10)。在(10)中研究的其他方法,如引导非局部均值、块匹配 4D 或深度解码器,分别将 CNR 提高了 24.35 ± 16.30%、38.31 ± 20.26% 和 41.67 ± 22.28%。也可以在重建期间执行去噪,但这无法在现有机器上实现。最重要的限制是所有这些方法都缺乏 FDA 或 CE 认证。我们的研究重点是 Subtle PET™(Subtle Medical,美国斯坦福,由法国 Incepto 提供)。它是一款经 FDA 和 CE 批准的 FDG PET(11)后处理去噪软件,基于卷积神经网络(CNN),这是最常见的图像处理深度学习架构。
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
这项研究的目的是观察基于单词想象的原始EEG信号的独立组件分析(ICA)方法的有效性,该方法将用于无言语的单词分类。脑电图(EEG)信号是当某人进行活动(例如睡觉,思维或其他体育活动)时代表人脑的电活动的信号。eeg数据基于用于研究的想象力一词,伴随着肌肉运动,来自肌肉运动,心跳,眼睛眨眼,电压等。在先前的研究中,ICA方法已被广泛使用且有效地缓解生理伪像。伪像的信号比(ASR)用于测量ICA在本研究中的有效性。如果比率越大,则ICA方法被认为有效地清除了脑电图数据中的噪声和伪影。基于实验,从14个电极上获得的11个受试者获得的ASR值在0,910至1,080的范围内。因此,可以得出结论,ICA可有效根据单词想象从EEG信号中删除伪像。
我们使用扩散概率模型表示高质量的图像合成结果,这是一种受非平衡热力学考虑因素启发的潜在变量模型。我们的最佳结果是通过根据扩散概率模型与Langevin Dynamics匹配的扩散概率模型和降级分数之间的新联系而设计的,我们的模型可以解释为一种渐进的损失减压方案,该方案可以解释为自动性解码的普遍化。在无条件的CIFAR10数据集中,我们获得的成立分数为9.46,最先进的FID得分为3.17。在256x256 LSUN上,我们获得了类似于Progenkivegan的样品质量。我们的提示可在https://github.com/hojonathanho/diffusion上获得。
时间采样框架 (TSF) 认为,诵读困难特有的语音困难是由一个或多个时间速率的非典型振荡采样引起的。LEEDUCA 研究对儿童进行了一系列脑电图 (EEG) 实验,让儿童聆听慢节奏韵律 (0.5-1 Hz)、音节 (4-8 Hz) 或音素 (12-40 Hz) 速率的调幅 (AM) 噪声,旨在检测可能与诵读困难相关的振荡采样感知差异。这项研究的目的是检查这些差异是否存在,以及它们与儿童在通常用于检测诵读困难的不同语言和认知任务中的表现有何关联。为此,估计了时间和频谱通道间EEG连接,并训练了去噪自动编码器(DAE)来学习连接矩阵的低维表示。通过相关性和分类分析研究了这种表示,结果表明其能够以高于0.8的准确率检测出诵读困难患者,平衡准确率在0.7左右。DAE表示的某些特征与儿童在语音假设类别的语言和认知任务中的表现显著相关(p<0.005),例如语音意识和快速符号命名,以及阅读效率和阅读理解。最后,对邻接矩阵的更深入分析显示,DD受试者颞叶(大致是初级听觉皮层)电极之间的双侧连接减少,以及F7电极(大致位于布罗卡区)的连接增加。这些结果为使用更客观的方法(例如 EEG)对阅读障碍进行补充评估铺平了道路。
deosumab是一种完全人类的单克隆抗体,通过中和RANKL抑制骨吸收,RANKL是破骨细胞形成,功能和存活的关键介体。Demumab获得男性和女性的骨质疏松症治疗。NICE TA204涵盖了绝经后妇女的原发性和继发性骨质疏松骨折,其骨折风险增加。本文档旨在为GPS开处方Denosumab提供一个框架。它阐明了进入共享护理安排的全科医生和医院专家的相关责任。该文件应与EL(91)127中给出的规定事项的一般指南一起阅读,“医院和GPS之间的处方责任”。交通信号灯分类请注意,此共享护理框架是指denosumab 60mg注射(Prolia),该注射(Prolia)被批准为Hull和East Riding中的琥珀色药物。Demumab 120mg注射(XGEVA)被许可用于减少实体瘤骨转移患者的骨骼损伤,被归类为红色药物,不应由非专家团队开处方。