我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
我们对射击噪声损坏的图像和删除噪声的镜头提出了新的视角。通过将图像形成视为光子在检测器网格上的顺序积累,我们表明,经过训练的网络可以预测下一个光子可能到达的位置,实际上可以解决最小均方形误差(MMSE)denoising任务。这种新观点使我们能够做出三个贡献:i。我们提出了一种新的策略,用于自我监督的denoisis,ii。我们提出了一种通过迭代采样并将少量光子添加到图像中的溶液后部采样的新方法。iii。我们通过从空画布启动此过程来得出一个完整的生成模型。我们称这种方法的生成积累(GAP)。我们在4个新的荧光显微镜数据集上进行定量和定性评估我们的方法,该数据将可供社区提供。我们发现它的表现优于其基准或在PAR上执行。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
扩散模型在产生各种自然分布的高分辨率,逼真的图像方面取得了巨大的成功。但是,他们的性能在很大程度上依赖于高质量的培训数据,这使得从损坏的样本中学习有意义的分布变得具有挑战性。此限制限制了它们在稀缺或昂贵的科学领域中的适用性。在这项工作中,我们引入了DeNoising评分蒸馏(DSD),这是一种出奇的有效和新颖的方法,用于训练低质量数据的高质量生成模型。DSD首先预修了一个扩散模型,专门针对嘈杂,损坏的样品,然后将其提炼成能够生产精制,干净的输出的单步生成器。传统上将得分蒸馏视为加速扩散模型的一种方法,但我们表明它也可以显着提高样本质量,尤其是从退化的教师模型开始时。在不同的噪声水平和数据集中,DSD始终提高生成性能 - 我们在图中总结了我们的经验证据1。此外,我们提供了理论见解,表明在线性模型设置中,DSD识别了干净的数据分散协方差矩阵的特征空间,并隐含地正规化了生成器。此透视图将蒸馏片重新升级为效率的工具,而且是改善生成模型的机制,尤其是在低质量的数据设置中。
生成的AI模型,例如稳定的扩散,DALL-E和MIDJOURNEY,最近引起了广泛的关注,因为它们可以通过学习复杂,高维图像数据的分布来产生高质量的合成图像。这些模型现在正在适用于医学和神经影像学数据,其中基于AI的任务(例如诊断分类和预测性建模)通常使用深度学习方法,例如卷积神经网络(CNNS)和视觉变形金刚(VITS)(VITS),并具有可解释性的增强性。在我们的研究中,我们训练了潜在扩散模型(LDM)和deno的扩散概率模型(DDPM),专门生成合成扩散张量张量成像(DTI)地图。我们开发了通过对实际3D DTI扫描进行训练以及使用最大平均差异(MMD)和多规模结构相似性指数(MS-SSSIM)评估合成数据的现实主义和多样性来生成平均扩散率的合成DTI图。我们还通过培训真实和合成DTI的组合来评估基于3D CNN的性别分类器的性能,以检查在培训期间添加合成扫描时的性能是否有所提高,作为数据增强形式。我们的方法有效地产生了现实和多样化的合成数据,有助于为神经科学研究和临床诊断创建可解释的AI驱动图。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
最近的视频介绍方法通过利用光学流以引导像素传播的参考帧或特征空间中的像素传播,从而实现了令人鼓舞的改进。但是,当蒙版面积太大并且找不到像素对应关系时,它们会产生严重的伪影。最近,Denois的扩散模型在产生多样化和高质量的图像时表现出了令人印象深刻的表现,并且已在许多作品中被用于图像插图。但是,这些方法不能直接应用于视频以产生时间连接的覆盖结果。在本文中,我们提出了一个名为Vipdiff的无训练框架,该框架在反向扩散过程中调节扩散模型,以产生时间连接的涂漆结果,而无需任何培训数据或对预训练的模型进行微调。Vipdiff将光流作为指导,从参考帧中提取有效的像素,以作为优化随机采样的高斯噪声的约束,并使用生成的结果来进一步的像素传播和条件生成。Vipdiff还可以通过不同的采样噪声产生各种视频介绍结果。实验表明,我们的Vipdiff在时空连贯性和保真度方面都超过了最先进的方法。
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。