摘要 - 医学成像应用在人体解剖学,病理学和成像领域方面高度专业。因此,用于培训医学成像中深度学习应用的注释培训数据集不仅需要高度准确,而且还需要多样化,并且足够大,以涵盖与这些规格有关的大多数合理示例。我们认为,实现此目标可以通过带有注释的合成图像的受控生成框架来促进,需要多个条件规格作为输入才能提供控制。我们采用denoising扩散概率模型(DDPM)来训练肺CT域中的大规模生成模型,并根据无分类器采样策略进行扩展,以展示一个这样的生成框架。我们表明,我们的方法可以产生带注释的肺CT图像,这些图像可以忠实地代表解剖学,令人信服地愚弄专家将其视为真实。我们的实验表明,这种性质的受控生成框架几乎可以超过几乎所有最新的图像生成模型,而在接受类似的大型医疗数据集接受培训时,在生成的医学图像中实现了解剖学一致性。
音频denoising,尤其是在鸟类声音的背景下,由于持续的残留噪声,这仍然是一项具有挑战性的任务。传统和深度学习方法通常在人工或低频噪声中挣扎。在这项工作中,我们提出了VITV,这是一种新型的方法,利用了视觉变形(VIT)架构的力量。vitvs熟练地结合了分段技术,从而将清洁音频与复杂的信号混合物中解脱出来。我们的主要贡献涵盖了VITV的发展,引入了全面,远程和多规模的表示。这些贡献直接解决了常规方法固有的局限性。广泛的例子表明,VITV的表现要优于最先进的方法,将其定位为现实世界中鸟类声音降解应用的基准解决方案。源代码可用:https://github.com/aiai-4/vivts。索引术语:音频denoising,变压器,分段
推荐引用 推荐引用 G., Mohanapriya;Muthukumar S.;Santhosh Kumar S.;和 Shanmugapriya MM。“用于医学图像处理的卡尔曼布西滤波神经模糊图像去噪。”中智集合与系统 70, 1 (2024)。https://digitalrepository.unm.edu/nss_journal/vol70/iss1/19
和图片采集,也用于清除嘈杂的图像。在过去的几年中,研究对象的增加,这些主题致力于设计和制造降噪方法。本研究回顾了所有主要图像剥夺技术,特别强调了综合的深度学习方法以及传统的信号处理方法。该评论提出了一系列广泛的技术,例如卷积神经网络(CNN),小波变换,混合模型及其修订。讲师将重点关注每种方法的优势以及缺点,以及它们在各个领域的适当性,从中可以得出当前最先进的图像。另一方面,本文讨论了关键障碍,从而进一步研究了网络安全和网络犯罪预防的研究,这一综述的旨在为研究人员,从业人员和爱好者提供服务,他们希望凝视Denoise图像的新趋势和发展的新趋势和发展。
高清地图(HD-MAP)的至关重要目的是为地图元素提供厘米级别的位置信息,并在自主驾驶中的各种应用中扮演着关键的角色,包括本地化[6,23,32,33,35,38]和Navigation [1,2,11]。传统上,HD-MAP的构建是通过基于SLAM的方法[30,40]离线进行的,这既是耗时又是劳动力密集的。最近的研究努力已转向使用船上的预定范围内的本地地图的建造。尽管许多现有的作品框架构造作为语义序列任务[17,24,27,29,41],但这种方法中的栅格化表示表现出冗余的信息,缺乏地图元素之间的结构关系,并且通常需要广泛的后处理工作[17]。响应这些局限性,MAPTR [19]采用了一种端到端的方法来构建vecter ver的地图,类似于Detr范式[4,5,21,42]。
摘要。扩散模型最初是为了产生图像的,最近引起了人们的关注,作为一种有希望的图像降级方法。在这项工作中,我们进行了全面的实验,以调查扩散模型所带来的挑战。在医学成像中,保留原始图像含量以及避免添加或删除潜在的病理细节至关重要。通过经验分析和讨论,我们在基于扩散的denoising背景下高出了图像感知与失真之间的权衡。,我们证明了标准扩散模型采样方案与一步denoising相比,PSNR的降低高达14%。此外,我们提供了视觉表明,表明扩散模型与随机采样相结合,具有在脱氧过程中产生合成结构的趋势,从而损害了被剥离图像的临床有效性。我们的彻底调查提出了有关扩散模型对医学图像denoising的适用性的疑问,强调了潜在的局限性,可以仔细考虑将来的应用。
摘要。最近,在便携式低场(LF)磁共振成像(MRI)系统的降低方面取得了显着进步。这些系统旨在提供低成本,非屏蔽和床侧诊断解决方案。MRI在降低的田间强度下经历了信噪比(SNR)的降低,从而导致严重的信号恶化和重建不良。因此,由于任务的性质不佳,从低场MRI重建高场等效图像是一个复杂的挑战。在本文中,我们引入了扩散模型驱动的神经表示。我们将低场MRI增强问题分解为数据一致性子问题和先前的子问题,并在迭代框架中解决它们。扩散模型提供了高质量的高场(HF)MR图像,而隐式神经表示确保了数据一致性。实验结果对模拟的LF数据和临床LF数据的结果表明,我们所提出的方法能够实现零摄像的LF LF MRI增强功能,从而显示出一些临床应用的潜力。
摘要。由于各种物理降解因子和检测到的少量计数,从低剂量正电子发射断层扫描(PET)扫描中获得了高质量的图像是具有挑战性的。基于高级分布学习的生成模型(一种基于高级分布学习的生成模型)的转化扩散概率模型(DDPM)显示了各种计算机视觉任务的有希望的性能。但是,目前DDPM主要以2D模式进行研究,该模式的限制是pet图像denoising的局限性,因为通常以3D模式获取,重建和分析PET。在这项工作中,我们提出了一种用于PET Image DeNoising的3D DDPM方法,该方法采用3D卷积网络来训练得分函数,并启动网络学习3D分布。使用从西门子传记视觉Quadra扫描仪(轴向视野> 1m)获取的总体体18 F -FDG PET数据集来评估3D DDPM方法,因为这些总体数据集需要的3D操作最多可从不同的轴向液体中利用丰富的信息。所有模型均在1/20低剂量图像上训练,然后在1/4、1/20和1/50低剂量图像上进行评估。实验结果表明,在定性和定量评估中,3D DDPM明显优于2D DDPM和3D UNET,能够从低质量PET图像中恢复更精细的结构和更准确的边缘轮廓。此外,当训练和测试数据之间存在噪声水平不匹配时,3D DDPM显示出更大的鲁棒性。最后,就不确定性而言,将3D DDPM与2D DDPM进行比较,发现3D DDPM对可重复性的信心更高。
与常规摄像机相比,事件摄像机代表了神经形态成像技术的值得注意的进步,由于其独特的优势,研究人员引起了很大的关注。但是,事件摄像机容易受到显着水平的测量噪声,这可能会对依赖于事件流的算法的性能降低,例如感知和导航。在这项研究中,我们介绍了一种新颖的方法来降级事件流,目的是填写未能准确反映出真正的对数强度变化的事件。我们的方法着重于事件的异步性质和时空特性,最终导致了新型异步时空事件的发展神经网络(ASTEDNET)。该网络直接在事件流上运行,规避将事件流转换为图像帧等密集格式的需求,从而保留其固有的异步性质。借助图形编码和时间卷积网络的原理,我们结合了时空特征注意机制,以捕获事件之间的时间和空间相关性。这可以使原始流中每个活动事件像素的分类为代表真正的强度变化或噪声。在多个数据集上针对最先进方法进行的比较评估表明,我们所提出的算法在消除噪声方面具有显着的效率和鲁棒性,同时将有意义的事件信息保留在场景中。
摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing