tadah!代码提供了一个多功能平台,用于开发和优化机器学习间的原子质潜力(MLIP)。通过集成综合描述符,它允许对系统交互的细微表示,并具有独特的截止函数和交互距离。tadah!支持贝叶斯线性回归(BLR)和内核脊回归(KRR),以增强模型的准确性和不确定性管理。关键特征是其超参数优化周期,迭代精炼模型体系结构以提高可传递性。这种方法结合了构图的限制,将预测与实验和理论数据保持一致。tadah!提供了一个用于LAMMP的接口,从而使MLIP在分子动力学模拟中的部署。它专为广泛的可及性而设计,支持桌面和HPC系统上的并行计算。tadah!利用模块化的C ++代码库,利用编译时间和运行时多态性来灵活性和效率。神经网络支持和预定义的粘结方案是潜在的未来发展,以及塔达!仍然对社区驱动的功能扩展开放。综合文档和命令行工具进一步简化了MLIP的开发和应用。
本研究提出了一个基于经典 S 曲线的新模型,该曲线描述了最大容量下的部署和稳定。此外,该模型还扩展到增长后稳定期,其中技术能力根据设备寿命的分布进行更新。我们得到了两个定性不同的结果。在“快速”部署的情况下,其特点是部署时间相对于平均设备寿命较短,生产会出现显著波动。在“慢速”部署的情况下,生产单调增加,直到达到更新稳定期。这两个案例研究与直觉相反地验证了这些结果:核电站是快速部署,智能手机是慢速部署。这些结果对于长期工业规划很重要,因为它们使我们能够预测未来的商业周期。我们的研究表明,商业周期可以内生地源于安装和更新的工业动态,这与将波动归因于外生宏观经济因素的传统观点形成鲜明对比。这些内生循环与更广泛的趋势相互作用,可能会受到宏观经济条件的调节、放大或减弱。这种部署和更新的动态与长寿命基础设施技术(例如支持可再生能源行业的技术)有关,并对行业参与者具有重大的政策影响。
通过纳米线阵列的毛细管上升润滑实现润滑剂耗尽的抗滑动液体注入多孔表面 Hong Huy Tran、Youngjin Kim、Céline Ternon、Michel Langlet、David Riassetto、* 和 Daeyeon Lee* Hong Huy Tran、Youngjin Kim 博士、Céline Ternon 教授、Michel Langlet 博士、David Riassetto 教授 Univ.格勒诺布尔阿尔卑斯、法国国立科学研究院、格勒诺布尔 INP(格勒诺布尔阿尔卑斯大学工程学院)、LMGP、38000 格勒诺布尔、法国 电子邮件:david.riassetto@grenoble-inp.fr Daeyeon Lee 教授 宾夕法尼亚大学化学与生物分子工程系,宾夕法尼亚州费城 19104,美国 电子邮件:daeyeon@seas.upenn.edu 关键词:液体注入表面、润滑剂消耗、润湿脊、ZnO 纳米线阵列、毛细管作用 尽管润滑剂在各种应用中都具有良好的前景,但随着时间的推移,润滑剂的消耗会带来
(CBOD)夹具带打开装置(CDS)立方体设计规范(CSLI)立方体发射计划(CSOS)客户空间对象(DPAF)双有效载荷附加配件(EAGLE)ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPASESTAILARE实验室实验(EELV)EELV EELV EALVEABLABLE SPACE ERPORABL ABOREVER EVEREDEND PRECTEND WAMERATION(ENANORCSD)CUBSASD CUBSACTA CUBSACTA CUDAATA(ESATESD)(ESATASD) EELV二级有效载荷适配器(GEO)地静止赤道轨道(HEO)高度椭圆形轨道(ISS)国际空间站(J-SSOD)JEM小型卫星轨道轨道轨道(JAXA)日本航空航天勘探局(JEM)日本实验模块(JEMRMS)日本实验模块的远程模块化(JEMRMS) (M-OMV) Minotaur Orbital Maneuvering Vehicle (MEO) Medium Earth Orbit (MET) Microwave Electrothermal Thrusters (MLB) Motorized Light Bands (MPAF) Multi Payload Attach Fittings (MPEP) Multi-Purpose Experiment Platform (NICL) Nanoracks Interchangeable CubeSat Launcher (NOAA) National Oceanic and Atmospheric Administration (NRCSD) Nanoracks ISS立方体外部部署(OMV)轨道机动车辆(OTV)轨道运输车辆(PCBM)Cygnus Cygnus被动式泊位机制(RUG)乘车用户指南(SL-OMV)小型发射轨道轨道操纵车辆(SSMS)
首字母缩写定义CA中央权威(ZSCALER)CDR内容撤消和重建CSV CSV COMA分离值DLP数据损失预防预防DNS DNS DNS域名DPD DED PEER DETED DEAD PEER检测(RFC 3706)GRE通用路由封装(RFC2890 IPSec Internet Protocol Security (RFC2411) PCI Payment Card Information PFS Perfect Forward Secrecy PHI Protected Health Information PSK Pre-Shared Key SaaS Software as a Service SSL Secure Socket Layer (RFC6101) TLS Transport Layer Security VBA Visual Basic for Applications VDI Virtual Desktop Infrastructure XFF X-Forwarded-For (RFC7239) ZDX Zscaler Digital Experience (ZScaler)Zia Zscaler Internet访问(ZScaler)ZPA ZSCALER私人访问(ZScaler)
纸质类型:研究纸地下水是阿富汗饮用水的主要来源;但是,对全国的地下水资源的了解有限。本研究旨在在五年(2017-2021)(2017-2021)中定量评估赫拉特省的地下水动力学,并分析整个关键地区的地下水水平的变化。从哈里德(Harirud)水和赫拉特市(Herat City)内的各个地区的10个重要地区的10口监测井收集了数据。 数据被用来增强对地下水资源现状的理解及其通过井,泉水和Qanats的提取,突出了它们在满足水需求和面临的挑战中的作用。 每月计算每个井的平均水位,并从该数据中得出年平均水平,以促进五年的比较。 调查结果表明,赫拉特地区的地下水水平从22.42 m增加到25.12 m,而阿德拉斯加地区的地下水水平显着下降,水平从25.04 m下降到28.61 m,显着下降了3.57 m。这项研究强调了对地下水资源有效监测和管理的关键需求,以确保该地区的长期水安全和可持续性。数据。数据被用来增强对地下水资源现状的理解及其通过井,泉水和Qanats的提取,突出了它们在满足水需求和面临的挑战中的作用。每月计算每个井的平均水位,并从该数据中得出年平均水平,以促进五年的比较。调查结果表明,赫拉特地区的地下水水平从22.42 m增加到25.12 m,而阿德拉斯加地区的地下水水平显着下降,水平从25.04 m下降到28.61 m,显着下降了3.57 m。这项研究强调了对地下水资源有效监测和管理的关键需求,以确保该地区的长期水安全和可持续性。
摘要 - 网络函数虚拟化(NFV),该函数将网络函数从硬件中解除,并将其转换为独立于硬件的虚拟网络函数(VNF),是许多新兴网络域,例如5G,Edge,Edge Computing和Data-Center网络。服务功能链(SFC)是VNF的有序集。VNF部署问题是在SFC中找到最佳的部署策略VNF,同时保证服务级协议(SLA)。现有的VNF部署研究主要关注无能量考虑的VNF序列。但是,随着用户和应用程序要求的快速开发,SFC从序列到动态图,服务提供商对NFV的能源消耗越来越敏感。因此,在本文中,我们确定了能节能的图形结构的SFC问题(EG-SFC),并将其作为组合优化问题(COP)提出。受益于COP机器学习的最新进展,我们提出了一个基于约束深度强化学习(DRL)方法的端到端图神经网络(GNN)来求解EG-SFC。我们的方法利用图形卷积网络(GCN)表示DRL中的双重Q-Network(DDQN)的Q网络。提出了掩模机制来处理COP中的资源约束。实验结果表明,所提出的方法可以处理看不见的SFC图,并且比贪婪的算法和传统DDQN更好地表现出更好的性能。
公共和商业航天行业正在计划持续时间更长、距离更远的太空任务,包括建立可居住的月球基地和载人火星任务。为了支持独立于地球的科学和医疗操作,此类任务可以利用人工智能和机器学习模型来协助机组人员的医疗保健、航天器维护和其他关键任务。然而,在地球和太空之间传输大量数据以进行模型开发会消耗宝贵的带宽,容易受到通信中断的影响,并可能危及机组人员的安全和数据隐私。联邦学习可以在保持数据原位并仅传输模型参数的同时进行模型训练。在这项工作中,我们提出了一个灵活、有弹性的联邦学习框架,可在地球和国际空间站之间安全地传输模型更新。2024 年 3 月 15 日,该框架率先在太空飞行环境中部署联邦学习,使用真实的生物医学研究数据和合成生成的数据在地球和国际空间站之间训练分类器模型。
1. 供应链培训:对卫生工作者进行疫苗储存、处理和库存管理方面的培训,每 1-3 年定期进行进修培训。培训课程将强调冷链管理、疫苗库存控制和物流。这将改善使用数据进行预测和减少缺货,并改善疫苗储存,坚持保持冷链。2. 增强微观规划:有效的免疫供应链依赖于准确的微观规划,该规划考虑到免疫不足人群的独特需求。地图和数据分析可以帮助识别这些社区,确定疫苗接种障碍,并相应地定制干预措施。这些信息对于需求预测、有针对性的分发和确保公平获得疫苗至关重要。通过解决这些问题