摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
他于 2021 年获得伦斯勒理工学院核工程博士学位,期间致力于开发熔盐反应堆 (MSR) 系统中不溶性裂变产物传输的质量传递建模方法。他的研究生工作由能源部核能大学计划 (DOE NEUP) 奖学金资助,他于 2017 年获得该奖学金。
1伊利诺伊大学生物医学工程系,美国伊利诺伊州伊利诺伊州伊利诺伊州60607; salver5@uic.edu(S.A.A. ); usvnagelli@gmail.com(联合国)2伊利诺伊州伊利诺伊大学心理学系,美国伊利诺伊州伊利诺伊州60607; ewenze4@uic.edu(e.s.w. ); pmaki1@uic.edu(p.m.m.) 3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P. ); bbrain2@uic.edu(B.L. ); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。 : +1-(312)-996-5624†这些作者对这项工作也同样贡献。1伊利诺伊大学生物医学工程系,美国伊利诺伊州伊利诺伊州伊利诺伊州60607; salver5@uic.edu(S.A.A.); usvnagelli@gmail.com(联合国)2伊利诺伊州伊利诺伊大学心理学系,美国伊利诺伊州伊利诺伊州60607; ewenze4@uic.edu(e.s.w.); pmaki1@uic.edu(p.m.m.)3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P. ); bbrain2@uic.edu(B.L. ); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。 : +1-(312)-996-5624†这些作者对这项工作也同样贡献。3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P.); bbrain2@uic.edu(B.L.); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。: +1-(312)-996-5624†这些作者对这项工作也同样贡献。
摘要 地质热能存储 (GeoTES) 利用地下储层来存储和调度能源,以满足可以跨越整个季节的特定需求计划。能源输入可以有多种来源/形式;在本文中,我们研究了 1) 结合太阳能热混合和使用枯竭的油气储层的 GeoTES 技术,以及 2) 结合由过剩可再生电力充电的热泵和使用低温浅层储层的 GeoTES 技术。对于每种 GeoTES 技术,我们都会对候选储层进行适用性分析,开发初步的技术经济模型,并通过选定的案例研究验证该模型。本文概述了我们在关注主题上的技术进展,旨在促进 GeoTES 技术在未来能源市场中得到更广泛的接受。
摘要:最近,人们对利用耗尽的气体和石油储层进行碳捕获和储存越来越兴趣。这一兴趣是由于许多储层已经耗尽或需要增强的石油和天然气回收率(EOR/EGR)。地下存储库中CO 2的固结是一种实现碳中立性的高效方法。此过程通过促进EOR/EGR来实现双重目的,从而帮助检索残留的油气和天然气,并同时确保CO 2的安全和永久存储,而无需泄漏的风险。注射率定义为流体在不引起岩石破裂而不引起的水库中的能力。这项研究旨在通过检查对注射率的有限考虑,特别是在耗尽的地下储层中,旨在填补碳捕获和存储(CCS)文献的空白。它审查了影响CO 2的注射率以及此类储层中某些现场病例数据的关键因素。
能源管理局(BOEM)评估了墨西哥中部大陆货架中的朱红色租赁块,以在耗尽的石油田中销售碳储量。在他们的研究中,Boem确定了基于石油生产史的潜在存储位置,将朱红色39块的4路关闭为潜在的储存地点。我们的项目提供了带有数值模拟的Vermilion 39字段的详细地下表征,以更准确地评估该字段的存储性能。此外,我们提出了Boem不考虑的朱红块中的高价值盐水储存储存量。该潜在位置位于朱红块55-56和67-68中的低浸入未呈现的沉积物中。我们将两个地点都作为该地区运营商可以开发的商业碳存储的高价值目标。使用3D地震调查和井数据对两个站点进行了表征,以识别潜在的存储复合物并绘制其结构。然后使用这些解释来构建地质模型,并通过强3代码对CO2注入进行数值模拟。最后,进行了基础设施和经济评估,以确定两个地点CCS项目的商业生存能力。数值仿真结果表明,朱红39的4路闭合可能会持有超过5000万吨的二氧化碳,主要利用结构和地层捕获。我们确定该站点的最大风险是通过传统井泄漏。在这个位置,最大的风险是目标单元的储层质量。仿真结果表明,盐水储层储存功能还可以利用毛细管和残留诱捕来存储5000万吨二氧化碳,以稳定注射后的二氧化碳羽流。我们的结果表明,所选的站点可以存储商业上可行的捕获的二氧化碳,抵消运输和捕获的成本,并有可能通过当前可用的45Q税收抵免来实现利润。我们提出两个高级
下列的PCR结果是使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取DNA的结果,显示有效的宿主DNA耗竭和微生物DNA恢复。使用QPCR分析,据估计,对于这些样品的宿主DNA耗竭和细菌DNA恢复估计高于90%。图1:使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取的DNA的PCR。a)使用人β-珠蛋白引物对宿主DNA检测。b)使用16S引物对细菌DNA检测。m:DNA标记;泳道1、3、5:提取的总DNA,没有执行宿主耗竭步骤;泳道2、4、6:宿主耗尽的(H. dep)DNA使用脊柱状宿主耗尽微生物DNA试剂盒提取;泳道7:PCR阴性对照。
表1。从八个物种制备的无核能总RNA文库中检测到的%rRNA值和基因数量。通用的人/小鼠/大鼠参考RNA,牛胎盘RNA,番茄和小麦叶RNA以及从沉淀的绿藻细胞中提取的RNA和内部成年酵母菌培养物用作输入(每位图书馆100 ng)。每个库的数据分析使用了3000万读对(150 bp配对)。修剪大奖!v0.6.6,Star v2.6.1d,Samtools v1.9和farmaturecounts v2.0.1用于修剪,对齐,过滤/索引和读取计数分配。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。 用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。 tpm,百万分的成绩单。RRNA基因/外显子的分类及其读取是基于UCSC基因组浏览器的注释和retoMasker rRNA轨道的基础。用于分析的参考基因组是组件GRCH38(H。SAPIENS),CRCM39(M。MUSCULUS),RNOR_6.0(R。NORVEGICUS),ARS-UCD1.2(B. Taurus),SL3.0,SL3.0,SL3.0(S. lycopersicum),IWGSC(iwgsc),IWGSC(iwgsc),iwgsc(iwgscim),chlamans,C。c. c. c. c. c. c. c. anasen nasunson。 Reinhardtii)来自Ensembl和Refseq的ASM18296V3(C. albicans)。tpm,百万分的成绩单。
抽象的地质热能存储(GEOTES)利用地下储层可以按照给定的需求时间表存储和调度能源,这些储量可以跨越整个季节。能量输入可以是各种来源/形式的;在本文中,我们研究了1)使用太阳热杂交和使用耗尽的油/天然气储存剂的地理位置技术,以及2)用过量的可再生电力收取的热泵并使用低温浅水储藏液,用热泵进行地理位置。对于每种地理技术,我们对候选水库进行了适合分析,开发了初始的技术经济模型,并通过选定的案例研究验证模型。本文概述了我们在关注的主题方面的技术进步,并旨在促进对未来能源市场中Geotes技术的更广泛接受。
阿片类药物使用障碍(OUD)是一种公共卫生危机,目前因使用率增加和大多数是芬太尼的合成阿片类药物而加剧了。因此,鉴定新的生物标志物和减少有问题的芬太尼使用并复发到芬太尼服用的策略至关重要。近年来,越来越多的工作表明,肠道微生物组可以作为对兴奋剂和阿片类药物的行为和转录反应的有效调节剂。在这里,我们推进了这项工作,以定义微生物组驱动芬太尼摄入量和寻求芬太尼在翻译相关的药物自我管理模型中的操作。雄性大鼠的微生物组的耗竭,具有广谱抗生素会导致药物给药增加,固定比率增加,进行性比率和戒酒后寻求药物。利用这些动物的微生物组含量的16S测序,肠道微生物组的特定细菌群与药物服用水平紧密相关。此外,在微生物组操纵和芬太尼给药后对伏隔核的全球蛋白质组学分析,以定义微生物组状态如何改变该关键边缘子结构中功能性蛋白质组学景观。这些数据表明,改变的微生物组会导致突触蛋白组的明显变化,以响应重复的芬太尼处理。最后,微生物组消耗的行为效应是通过衍生的短链脂肪酸代谢物的辅助可逆的。综上所述,这些发现与肠道和底座基础中的肠道信号传导建立了明显的相关性,以在此空间中进行进一步的翻译工作。