AlphaStruxure 可帮助组织实现雄心勃勃、量身定制的能源转型 — 无需资本支出或复杂性。作为客户能源即服务系统的所有者,我们完全负责您在弹性、可靠性、温室气体减排和成本稳定性方面的长期目标。具体方法如下:
• 燃料库区域用于储存和分配喷气燃料。 • 燃料储存在地下储罐 (UST) 中。 • 燃料被转移到卡车上,供飞行准备区使用。 • 补救活动: − 1997 年:拆除 UST 和加油结构。 − 2006 年至 2013 年:运行空气喷射/土壤蒸汽提取系统 − 2019 年:拆除与加油结构和 UST 相关的油箱鞍座、混凝土垫和受污染土壤。有效清理了污染源区域。 − 2021 年:在污染源区域南部运行生物喷射系统。
摘要:人工智能 (AI)、机器学习 (ML) 和大数据一直被要求分析和理解现代日常生活的方方面面。人工智能和机器学习尤其广泛应用于畜牧业,以全天候监测动物和环境,从而更好地了解动物的行为和痛苦、疾病控制和预防,以及农民的有效商业决策。人工智能发展的一个特别有前景的领域是数字孪生技术,目前该技术用于提高多个行业和部门的效率和降低成本。与模型不同,数字孪生是现实世界实体的数字复制品,通过不断涌入的数据保持最新状态。数字孪生在畜牧业中的应用是下一个前沿,有可能用于改善大规模精准畜牧业实践、机械和设备的使用以及各种农场动物的健康和福祉。可以使用识别技术来检查面部特征(例如耳朵姿势和眼白区域)来监测动物的精神和情绪状态。与建模、仿真和增强现实技术结合使用,数字孪生可以帮助农民建造更节能的住房结构,预测繁殖的发情周期,阻止牲畜的不良行为,等等。与所有颠覆性的技术进步一样,数字孪生技术的实施需要对各个农场进行彻底的成本和收益分析。我们在这次审查中的目标是评估数字孪生技术在畜牧业中的应用进展,以期在未来彻底改变畜牧业。
越来越多的行业采用数字孪生,从而改变这些行业并带来新的机遇。数字孪生提供了前所未有的物理实体控制水平,并通过集成一系列技术帮助管理复杂系统。最近,农业取得了多项技术进步,但目前尚不清楚该社区是否正在努力在其运营中采用数字孪生。在这项工作中,我们采用混合方法来研究数字孪生对农业的附加值。我们研究了数字孪生在农业中的应用程度,阐明了这一概念及其带来的好处,并为更广泛的采用提供了基于应用的路线图。我们报告了 2017 年至 2020 年农业数字孪生的文献综述。我们确定了 28 个用例,并将它们与其他学科中的用例进行了比较。我们比较了报告的收益、服务类别和技术就绪水平,以评估农业中数字孪生的采用水平。我们从农业和其他学科中研究的数字孪生应用中提炼出可以为农业提供附加值的数字孪生特征。然后,受其他学科数字孪生应用的启发,我们提出了农业数字孪生的路线图,其中包括日益复杂的示例。我们通过确定农业数字孪生的独特特征来结束本文。
智能电池管理 更宽的输入电压窗口和频率公差有助于最大限度地减少电池传输,减少充电和放电循环次数,延长电池使用寿命并优化充电时间。双转换技术可防止各种电源不稳定,从而限制电池传输。并联冗余配置可以将设备连接到公共电池串,以便在一个 UPS 发生故障时也能获得满容量电池。NS3000 使用三种充电模式来满足最常见电池类型的规格,如密封 VRLA、AGM 或湿铅酸、镍镉。温度补偿充电可监控电池温度并相应地调整充电电压率。电池管理系统能够管理手动和自动测试,监控电池健康和剩余寿命。NS3000 UPS 配有内部开关,用于断开内部电池。
动物健康经济学是一门相对较新的学科,它正在逐步发展一个由概念、程序和数据组成的坚实框架,以支持优化动物健康管理的决策过程。该领域的研究主要涉及三个相互关联的方面:(1)量化动物疾病的经济影响,(2)开发在个别动物、畜群或种群受到影响时优化决策的方法,以及(3)确定特定疾病控制和健康管理计划和程序的盈利能力。本书旨在作为动物健康经济学及其基本方法的指南,主要针对:(1)兽医学、动物科学、农场管理和相关领域的学生,(2)参与提供动物健康服务的兽医和推广人员,(3)参与疾病控制政策制定的政府官员,以及(4)动物健康管理研究人员。它基于瓦赫宁根农业大学国际培训中心 (PHLO) 与该大学农场管理系和新西兰北帕默斯顿梅西大学兽医临床科学系合作举办的国际研究生课程。本书包括来自荷兰、新西兰、美国、英国和肯尼亚的国际公认专家的贡献。这些贡献包括对基础
国防部的可靠性中心维护和海军飞机服务期调整计划已被有效用于减少基地维护要求和成本。但是,海军和空军尚未完全遵守使用可靠性中心维护分析程序来确定所有航空系统的基地级维护任务的要求。因此,我们估计海军和空军没有利用这个机会在 6 年期未来防御计划(每年 1.388 亿美元)内将基地维护成本降低高达 8.328 亿美元。我们还发现,通过在制定海军飞机的预定基地维护间隔时充分考虑其飞机服务期调整计划检查的结果,海军可以在 6 年期未来防御计划(每年 520 万美元)内实现额外的 3120 万美元节省。
兰德国防研究所 (NDRI) 研究了国防部 (DoD) 仓库级可修复 (DLR) 供应链管理,以评估如何改进它以增强客户支持并降低成本。我们的研究团队采用了互补的方法,包括分析 DLR 流量和库存数据、访谈和现场访问、服务文档审查、文献综述以及特定 DLR 的案例研究。从这些多种方法中,我们提炼出库存明显“过剩”和客户支持不足的最常见原因,并确定了相关的流程改进机会。我们没有找到任何大型的“灵丹妙药”解决方案,结论是 DLR 由各军种管理得相对较好。但是,我们确实发现了一些改进 DLR 供应链管理的适度机会。第一个,也可能是最大的,是提高零件的可支持性,包括在规划支持仓库生产的库存时采用涵盖供应和维护的总成本视角。第二个机会是让陆军更多地转向拉动生产。第三是减少影响 DLR 供应链管理的所有类型合同的交付周期。第四是更好地考虑 DLR 生产规划中的所有资源交付周期以及采购和维修需求的可预见变化。这些改进都将改善客户支持,更好的零件支持可能会降低维护成本
流量测量结构被定义为安装在明渠或封闭管道中的水力结构,这些管道具有自由水位,在大多数情况下,可以从测量的上游水位得出流量。图 1 显示了流量测量结构。事实上,这种结构是人为减少渠道或管道的横截面积,导致上游水位上升,从而导致结构上的水位下降。如果减少幅度足够大,我们就会得到流量和上游水位之间的独特关系。通过连续测量这个水位,我们还可以获得流量随时间变化的连续记录。流量和上游水位之间的关系主要取决于结构的形状和尺寸,而上游渠道或管道的几何形状则略有不同。可以从理论方法建立该关系,该方法需要通过校准来支持,校准主要通过水力模型研究进行。在过去的几个世纪中,设计了多种类型的流量测量结构,其特性满足了现代水资源开发的需求,特别是在灌溉计划和水文研究中。了解流量测量结构的使用的最有效方法是查阅专门针对这些结构发布的手册。这样的手册 [1] 和 [2] 不仅对现有结构进行了相当完整的回顾,而且还提供了必要的基本原理和实用概述,说明如何根据特定需求选择最合适的结构以及如何进行流量测量结构的水力设计。本章讨论堰、水槽和闸门等明渠中的流量测量结构。此外,其中一些结构用于具有自由水位的封闭管道,例如下水道。