印度竹子的地理分布,特别是在东北地区特别提及其生物多样性。 地理信息系统(GIS):GIS的基本原理; GIS的历史; GIS目标:GIS的基本组成部分:硬件,软件,数据,人员和方法;信息域:空间和非空间;数据模型:矢量数据模型和栅格数据模型;数据产品,数据层覆盖范围和进入;属性数据附件;查询和分析;空间分析;创建主题地图。 竹解剖印度竹子的地理分布,特别是在东北地区特别提及其生物多样性。地理信息系统(GIS):GIS的基本原理; GIS的历史; GIS目标:GIS的基本组成部分:硬件,软件,数据,人员和方法;信息域:空间和非空间;数据模型:矢量数据模型和栅格数据模型;数据产品,数据层覆盖范围和进入;属性数据附件;查询和分析;空间分析;创建主题地图。竹解剖
在我的指导下成功完成了题为“联系人管理系统”的项目,部分满足了 2023-2024 学年 Savitribai Phule Pune 大学人工智能与数据科学系工程二年级的要求。
单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
Abid Hussain是计算机应用学院的副教授,以及Kota Career Point University(Raj。)的研究和高等研究院长他获得了MCA和博士学位。在计算机应用中。他是科塔职业生涯Point University的知识产权牢房主席。他拥有16年以上高等教育教学经验,包括UG和PG课程。他感兴趣的领域是云计算,网络安全,开源技术,网络挖掘,网络工程和网络安全。他还是职业生涯Point University计算机科学技术的研究主管。 他在著名的UGC护理和Scopus索引计算机科学技术期刊上发表了30多个研究论文。 他还在国家和国际会议上发表了20多篇论文。 他还担任各种国家和国际会议以及研究期刊的审阅者和技术计划委员会成员。 他曾在各种国际会议上担任过会议主席和主题演讲者。 他已经发布了有关计算机科学最新技术的4项专利。 他发表了3本撰写的,并为计算机科学技术编辑了2本编辑。 他还在各种大学中担任博士学位和概要评估的外部考官。 他也是Waset,Iaeng,CSTA,ICSES和IASTER的活跃成员。他还是职业生涯Point University计算机科学技术的研究主管。他在著名的UGC护理和Scopus索引计算机科学技术期刊上发表了30多个研究论文。他还在国家和国际会议上发表了20多篇论文。他还担任各种国家和国际会议以及研究期刊的审阅者和技术计划委员会成员。他曾在各种国际会议上担任过会议主席和主题演讲者。他已经发布了有关计算机科学最新技术的4项专利。他发表了3本撰写的,并为计算机科学技术编辑了2本编辑。他还在各种大学中担任博士学位和概要评估的外部考官。他也是Waset,Iaeng,CSTA,ICSES和IASTER的活跃成员。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。
104 Baishali Nayak Kamrup(M)19-Sep-72 Gen4。SG-I DR-97工业,商务与公共企业部联合秘书兼阿萨姆邦政府建筑公司有限公司(AGCCL)(ADDL),OSD,新德里阿萨姆邦(ADDL)3/16/2024
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
摘要:软骨肉瘤 (CHS) 是异质性的,但总体而言,是第二大最常见的原发性恶性骨肿瘤。尽管在过去几十年中,人们对肿瘤生物学的了解呈指数级增长,但手术切除仍然是治疗这些肿瘤的金标准,而放疗和分化化疗无法充分控制癌症。对 CHS 的深入分子表征揭示了与上皮来源的肿瘤相比的显著差异。从遗传学上讲,CHS 是异质性的,但没有定义 CHS 的特征性突变,然而,IDH1 和 IDH2 突变很常见。血管减少、胶原蛋白、蛋白聚糖和透明质酸的细胞外基质组成为肿瘤抑制免疫细胞创造了机械屏障。相对较低的增殖率、MDR-1 表达和酸性肿瘤微环境进一步限制了 CHS 的治疗选择。 CHS 治疗的未来进展取决于对 CHS 的进一步表征,特别是肿瘤免疫微环境,以便改进和更好地针对性地治疗。
