辅酶A(COA)充当细胞内酰基的关键载体,在调节酰基转移反应并参与细胞代谢过程中起着基本作用。作为主要底物和辅助因子从事各种代谢反应,COA及其衍生物对各种生理过程产生了中心影响,主要是调节脂质和酮代谢以及蛋白质修饰。本文对COA的分子机制进行了全面综述,该机制会影响癌症的发作和进展,心血管疾病(CVD),神经退行性疾病和其他疾病。主要焦点包括以下内容。(1)在癌症中,诸如乙酰-COA合成酶2,ATP柠檬酸裂解酶和乙酰辅酶A羧化酶等酶通过调节乙酰-COA水平调节脂质合成和能量代谢。(2)在CVD中,诸如稳态 - coA脱发酶-1、3-羟基-3-羟基-3-甲基戊二核-COA(HMGC)合成酶2和HMGC还原酶的影响以及这些疾病的形成和进步是由Coa Metbolism跨多orgbolism跨越了这些疾病的形成和进步。(3)在神经退行性疾病中,COA在维持大脑中胆固醇稳态及其对此类疾病发展的影响方面的意义得到了详尽的讨论。涉及COA及其衍生物的代谢过程涵盖了细胞内的所有生理方面,在各种疾病的发作和进展中起关键作用。阐明COA在这些疾病中的作用会产生重要的见解,这些见解可以作为疾病诊断,治疗和药物开发的有价值的参考和指导。
摘要:相当长的一段时间以来,药理学活跃的水杨酰胺(2-羟基-N-苯基苯甲酰基)一直是与药物化学相关的研究的一个有希望的领域。这组化合物已经显示出广泛的生物学活性,包括但不限于抗癌作用。在这项研究中,选择取代的水杨酰胺以评估对U87人胶质母细胞瘤(GBM)细胞的体外活性。父级水杨酸盐,水杨酸5-氯吡嗪酸盐,4-氨基化的酸衍生物和新的水杨酸4-甲基苯甲酸盐是化学和体外表征的。为增强化合物的内在化,它们与氧气键的形成结合到递送肽。寡素([tkpkg] n,n = 1-4),神经蛋白受体的配体,用作GBM靶向载体肽。确定了在荧光肽衍生物的组织模拟模型上的体外细胞摄取,细胞内定位和穿透能力。化合物及其肽偶联物可显着降低U87神经胶质瘤细胞的活力。水杨酸化合物诱导的GBM细胞死亡与自噬的激活相关,其特征是轻链3蛋白的自噬相关加工的免疫检测。■简介
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
预计未来 20 到 30 年,德国的氢气需求将大幅上升。根据不同情景,预计 2045 年的氢气能源需求在 50 至 430 TWh(低热值 [LHV])之间。[1 – 3] 虽然部分氢气需求可以在当地满足,但仍需要进口氢气。对于较长的运输距离,例如从北美或南美进口氢气,管道运输并不可行。因此,未来通过船舶运输氢气将至关重要。除了液化氢气外,还有其他船运氢气选择。为此,氢气可以转化为其他化学能量载体,称为 H2 衍生物。本研究讨论了以下氢气运输选项:液态氢 (LH2)、液态甲烷 (Green LNG)、氨 (NH3)、液态有机氢载体 (LOHC) 和甲醇 (MeOH)。如图 1 所示,可以使用若干标准从技术上评估进口方案。提到的技术评估标准包括:进口方案流程链中各个步骤的技术准备情况、航运基础设施、体积能量密度以及能源载体的处理。这个清单绝不是完整的,可以进一步扩展。第一步,本研究侧重于能量利用率,即将氢气或其衍生物运输到进口国需要多少能量。图 2 概述了本研究涵盖的内容。虽然可以转换回氢气并且对于每种运输方案都予以考虑,但一些 H2 衍生物也可以直接在进口国使用。因此,对于绿色液化天然气、氨和甲醇,除了转换回氢气外,还考虑直接利用。大多数研究都集中于单一能源载体或其相关的进口成本。国际可再生能源机构 (IRENA) 2022 评估了 NH3、LH2 和 LOHC 的氢气进口; [4] Staiß 等人(2022 年)比较了 LH 2 、NH 3 、MeOH 和费托产品的进口选择。[5] 虽然 Hank 等人(2020 年)也考虑了与本文相同的能源载体(LH 2 、LOHC、CH 4 、MeOH 和 NH 3 ),但对于 H 2 衍生物 CH 4 、MeOH 和 NH 3 ,进口过程中没有再转化(裂解或重整)
选择性氘标记在药物研发过程中吸引了更多的关注,因为它具有独特的能力,可以通过在药物分子的特定位置掺入氘来改变药物的代谢命运和药代动力学特性并改善毒性特征。1此外,全氘代分子在开发创新材料2和通过中子散射研究软物质的结构和动力学方面得到了广泛的应用。3因此,探索在温和条件下构建选择性氘代和全氘代分子的新方法具有重要意义。吲哚衍生物被认为是最有利的结构模式之一,因为它们存在于许多天然产物、生物活性分子和功能材料中。4氘代吲哚作为突出的候选药物以及在化学和生物过程的机理研究中具有很高的价值。 5 在已报道的各种吲哚衍生物氘化方法中,直接 H/D 交换法是最有吸引力的选择,因为它具有诸多优势,包括不需要对起始材料进行预官能化,并且有可能对药物进行后期氘标记。6 已使用各种过渡金属(包括铱、7、铂、8、9、10、11、12、12 钴、12)作为催化剂,在吲哚中最活跃的 CH 键 C3 或(和)C2 处实现了区域选择性 H/D 交换。
1杜布雷森大学药物化学系,匈牙利H-4032 DEBRECEN; elorincz01@gmail.com(E.B.L.); herczeg.mihaly@pharm.unideb.hu(M.H.); borbas.aniko@pharm.unideb.hu(A.B。); herczegh.pal@pharm.unideb.hu(p.h.)2迪克雷大学药学博士学校,H-4032 DEBRECEN,匈牙利3国家生物分子研究中心,Masaryk University,611 37 Brno,捷克共和国Brno; josef.houser@ceitec.cz(J.H.); lenka.malinovska@ceitec.muni.cz(L.M.); michaw@chemi.muni.cz(M.W。)4中欧理工学院,马萨里克大学,捷克共和国625 00 BRNO 5 BRNO 5 BRNO,MASARYK University科学系生物化学系,捷克共和国Brno 611 37; rievajova.martina@mail.muni.cz 6应用化学系,杜布雷森大学H-4032 DEBRECEN,匈牙利DEBRECEN; kuki.akos@science.unideb.hu 7 Rega医学研究所,Ku Leuven,B-3000 Leuven,Belgium; lieve.naesens@kuleuven.be 8 National Laboratory of Virology, University of P é cs, H-7624 P é cs, Hungary 9 HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary * Correspondence: bereczki.ilona@pharm.unideb.hu
• 绿色氢气需要定价支持 • 至少需要 200 美元/吨的碳税来证明 GH2 成本为 3.9 美元/千克 • 炼油厂、氨气设施、天然气混合将获得收益 • 运输用例将需要更高的碳税 • 由于碳排放率高,钢铁行业的 GH2 将以较低的碳税获得收益
摘要:一系列新系列的噻唑基吡唑啉衍生物(4A - D,5A - D 6A,B,7A - 7A - D,8A,B和10A,B)通过噻唑和吡唑啉部分的组合设计和合成,从关键建筑物的组合组合,从关键建筑物开始,从吡唑啉甲氨基甲甲基甲酰胺(1A)(1A)(1A)(1A)(1A)(1A)。这十八种衍生物的设计按预期的EGFR/HER2双重抑制剂设计。使用乳腺癌MCF-7细胞系评估了开发化合物在抑制细胞增殖中的效率。在与Lapatinib(IC 50 = 5.88 µM)相比,新合成的噻唑基-吡唑啉在新合成的硫基酚基吡唑啉,化合物6a,6b,10a和10b中表现出有效的抗癌活性,IC 50 = 4.08、5.64、3.37和3.54 µm。此外,还以最多的细胞毒性化合物(6a和6b)向EGFR和HER2进行酶法测定,以证明其双重抑制活性。他们揭示了与Lapatinib(IC 50 = 0.007和0.018 m)相比,他们分别揭示了具有IC 50 = 0.024和0.005 µM IC 50 = 0.024和0.005 µm的EGFR的有希望的抑制作用。分别通过在G1和G1/S相处阻止MCF-7细胞系的细胞周期来诱导6A和10A诱导凋亡。对有希望的候选6A和10A的分子建模研究表明,它们与至关重要的氨基酸形成了EGFR和HER2抑制的重要结合,从而支持了体外测定结果。此外,对研究中的化合物进行了ADMET研究预测。
电子邮件:Ashraf.abousalem@gmail.com *** Mohamed A. Ismail Mansoura University,科学学院,化学系,Mansoura 35516,埃及。 电子邮件:mismail@mans.edu.eg 1。 简介电子邮件:Ashraf.abousalem@gmail.com *** Mohamed A. Ismail Mansoura University,科学学院,化学系,Mansoura 35516,埃及。电子邮件:mismail@mans.edu.eg 1。简介