策略设计模式是一种基本的行为设计模式,允许客户端在运行时控制对象的行为。策略模式在 C++ STL 中实际应用,例如将“策略”应用于如何执行操作(例如 std::par 或 std::seq 就是一个例子)——因此策略通常也称为“策略模式”。策略设计模式通常用于在运行时选择算法以最好地解决问题——将算法行为与对象本身分开,以帮助我们的软件更易于维护、扩展和灵活。在本次演讲中,我们将从头开始介绍一系列使用策略模式在运行时部署不同算法的 C++ 示例。我们还将查看部署策略模式的库中的代码示例,并讨论在现代 C++ 中使用策略模式的最佳实践。策略模式还将与模板方法模式进行比较,后者可能是一种替代选择。与会者将通过本次演讲获得继续实施策略模式的知识,以及如何在他们可能正在开展的项目中发现策略设计模式!
这也需要仔细研究回收定义中包含的过程。新的高碳化学技术将塑料分解为基本的构建块和所谓的化学“回收”或恢复的燃料,这是由于其环境影响而于机械回收的继发。这些过程是能源密集型的,到目前为止尚未证明是解决塑料废物问题的解决方案。由于高成本,缺乏足够的原料以及与环境性能相关的挑战,在运行中没有大规模的工业化学“回收”塑料植物。因此,有必要保障措施来确保回收立法的设计,然后是标准和主张 - 指机械回收,并且我们继续在可重复使用和可回收材料的途径上设计塑料,并通过可持续方法处理。
运输计划和设计手册(TPDM)由11卷组成,主要作为运输部门工作人员的工作文件出版。它还向参与香港运输基础设施计划和设计的其他人提供信息和指导。旨在定期修订此处包含的信息,以考虑最新的知识和经验。不可避免的时间延迟,这意味着某些部分可能不可避免地不是最新的。出于这个和其他原因,本手册中包含的标准不应严格遵循,而应将其视为一个框架,在该框架中,应执行专业判断以达成最佳解决方案。一般而言,TPDM中包含的标准通常适用于新的交通和运输设施,不应被视为详尽。可能会出现TPDM不完全涵盖的考虑因素和要求。在处理受现场限制的现有设施并努力考虑利益相关者的观点时,特别需要行使专业判断。还建议从业者参考与其设计有关的其他出版物,例如最新立法,实践守则,准则,数据集等。应用TPDM之前。
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
因残疾而遇到困难并希望获得学术调整和/或辅助艾滋病的学生必须与ODTU残疾人支持办公室和/或课程讲师以及学术部门的残疾学生顾问(对于列表:http://engelsiz.metu.metu.edu.edu.tr/en/Advisor-Students-Disents-Disabitials)。有关详细信息,请访问残疾人支持办公室的网站:https://engelsiz.metu.edu.dr/en/
○ 担任每个服务和员工办公室的主要客户和租户代表。 ○ 管理和监督 GSA 的投资组合。 ○ 审查和批准所有入住协议。 ○ 制定空间分配、设计和管理的政策、指导和措施。 ○ 获得建议并选择参与项目启动会议、市场调查、需求评估访谈、设计研讨会和空间验收演练。 ○ 审查和批准空间获取、重新定位或重新配置的所有要求包。 ○ 审查和批准本政策设计策略和指南部分的所有豁免请求。 ○ 审查和批准所有概念和设计意图图。 ○ 采购变更管理服务。 ○ 按照现有的 GSA 政策和/或指南实施智能入住和/或酒店式策略和协议。 ○ 确保在预算过程中提供资金请求和支持估算。 ○ 为所有超过 25,000 美元的项目制定、实施和管理治理流程。
桌面仿真。Simulink 中的桌面仿真使您能够验证 BMS 设计的功能方面,例如充电放电行为(使用单电池等效电路公式)、电子电路设计以及反馈和监督控制算法。在桌面上,使用行为模型模拟电池系统、环境和算法。例如,您可以探索主动与被动电池平衡配置和算法,以评估每种平衡方法对给定应用的适用性。您可以使用桌面仿真探索新的设计理念,并在制作硬件原型之前测试多种系统架构。您还可以在桌面仿真中执行需求测试,例如通过验证在检测到隔离故障时接触器是否无法打开或关闭。
APL750 现代工程材料 3 0 0 3 APL756 材料的微观结构表征 3 0 2 4 APL759 相变 3 0 0 3 APL763 材料的微纳米级力学行为 3 0 2 4 APL764 生物材料的力学行为 3 0 0 3 APL765 断裂力学 3 0 0 3 APL767 工程故障分析与预防 3 0 0 3 APLXX 材料工程专题 3 0 0 3