抽象背景:CRISPR工具箱通过标记效应子域的快速扩展,以酶促无效CAS9(DCAS9)或Cas9 Nickase(NCAS9)导致了几种有希望的新基因编辑策略。最近的添加包括CRISPR胞嘧啶或腺嘌呤碱基编辑器(CBES和ABES)和CRISPR Prime编辑器(PES),其中脱氨酶或逆转录酶分别融合到NCAS9。这些工具在动物和植物模型中建模并纠正引起疾病的突变的巨大希望。但到目前为止,还没有广泛可用的工具可以自动化BE和PE试剂的设计。结果:我们开发了PNB Designer,这是一种基于Web的PEGR NAS设计的应用程序,用于BES,并指导RNA。PNB设计师使设计定位指向RNA的指南RNA针对跨越多个王国的变体或参考基因组上的单个或多个靶标的指南RNA。与PNB设计师一起,我们设计了PegrNA,以模拟所有已知疾病,从而导致Clinvar可用的突变。此外,PNB设计人员可用于设计指南RNA来安装或恢复SNV,用一个CBE和七个不同的ABE PAM变体扫描基因组,并返回最佳使用。PNB设计师可以在http://fgcz-shiny .uzh.ch.ch.ch/pnbde signe r/结论上公开访问:结论:使用PNB设计师,我们为CRISPR PE和BE Reagents创建了一种用户友好的设计工具,应该简化选择编辑策略和避免设计并避免设计并进行设计。
版权和重印许可:允许摘录并注明来源。图书馆可以在美国版权法的限制之外复印本卷中首页底部带有代码的文章,供读者私人使用,但必须通过版权许可中心(222 Rosewood Drive, Danvers, MA01923)支付代码中所示的每份费用。如需重印或转载许可,请发送电子邮件至 IEEE 版权经理 pubs-permissions@ieee.org。
摘要。使用统计建模可以从数据得出结论时有两种文化。一个人假设数据是由给定随机数据模型生成的。另一个使用算法模型,并将数据机理视为未知的。统计社区已致力于几乎独家使用数据模型。这一承诺导致了无关紧要的理论,可疑的结论,并阻止了统计学家从事各种有趣的当前问题。在理论和实践中,算法建模在统计数据外迅速发展。 它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。 如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。算法建模在统计数据外迅速发展。它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。
更好的沟通策略支持与公众和商业行业的互动,这将增强国防部获得外部人才服务的能力。与此同时,愿意解决阻碍内部人才发展的文化障碍,将使人们能够采取持久的方法来留住这些非常有价值的人才,而不仅仅是强制性承诺。国防部应在负责任的人工智能部署方面发挥表率作用,必须重新思考如何吸引和留住有能力的人才。建议采取的行动包括为人工智能人才的入职创造更多机会,进一步促进已经在国防部工作的人工智能员工的职业发展,为这些员工提供使他们能够完成工作的技术,并与其他政府和私人组织合作。
● 编程作业 (25 %) 将会有几项编程作业,涉及 OO 编程、OO 设计和 UML 图。所有作业都是个人作业。逾期的作业将不被接受。 ● 测验 (10 %) 每章之后都会有简短的测验。这些测验的目的是鼓励学生阅读课程材料并理解概念。这些测验的目的是帮助学生更好地理解概念并将其应用于作业以及为期中和期末考试做准备。 ● 项目 (20 %) 每学期最后一个月,每个小组由 3 名成员组成一个小组项目,涉及 OO 设计和 GUI 编程。 ● 期中和期末(各占 20 %) 将会有一次期中考试和一次期末考试,包括选择题和书面答案。问题可以来自测验、课堂笔记、幻灯片、作业和课堂讨论。 ● 课堂参与 (5 %) 为鼓励参与,您的期末成绩的 5% 将来自您的参与。请注意,参与并不等于出席。
在量子计算机上可验证的较低复杂度。然而,量子电路 (QC) 的 QIP 体现仍不清楚,更不用说对 QIP 电路的 (彻底) 评估,特别是在 NISQ 时代的实际环境中,通过混合量子经典管道将 QIP 应用于 ML。在本文中,我们从头开始精心设计 QIP 电路,其复杂性与理论复杂性一致。为了使模拟在经典计算机上易于处理,特别是当它集成在基于梯度的混合 ML 管道中时,我们进一步设计了一种高效的模拟方案,直接模拟输出状态。实验表明,与之前的电路模拟器相比,该方案将模拟速度提高了 68k 倍以上。这使我们能够对典型的机器学习任务进行实证评估,从通过神经网络的监督和自监督学习到 K 均值聚类。结果表明,在量子比特足够的情况下,典型量子机制带来的计算误差一般不会对最终的数值结果产生太大影响。然而,某些任务(例如 K-Means 中的排序)可能对量子噪声更加敏感。