参考文献1。Divincenzo,D。P.量子计算的物理实施。Fortschritte der Physik:物理进展48,771(2000)。2。Ladd,T。D.等。量子计算机。自然464,45(2010)。3。Ito,T。等。四个四倍量子点中的四个单旋rabi振荡。应用物理信函113,093102(2018)。4。Mills,A。R.等。将单个电荷穿过一维硅量子点。自然传播10,1063(2019)。5。Mortemousque,P.A。等。在二维量子点阵列中对单个电子旋转的相干控制。自然纳米技术(2020)。6。损失,D。,Divincenzo,D。P.用量子点进行量子计算。物理评论A 57,120(1998)。7。Veldhorst,M。等。具有容忍控制的可寻址量子点量子量子。自然纳米技术9,981(2014)。8。Veldhorst,M。等。硅中的两分逻辑门。自然526,410(2015)。9。Takeda,K。等。 天然硅量子点中的易耐故障可寻址自旋值。 科学进步2,E1600694(2016)。 10。 Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Takeda,K。等。天然硅量子点中的易耐故障可寻址自旋值。科学进步2,E1600694(2016)。10。Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Watson,T。F.等。硅中可编程的两分量子处理器。自然555,633(2018)。11。Zajac,D。M.等。电子旋转的共同驱动的CNOT门。科学359,439(2018)。12。Yoneda,J。等。 一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。 自然纳米技术13,102(2018)。 13。 Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Yoneda,J。等。一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。自然纳米技术13,102(2018)。13。Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Takeda,K。等。在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。NPJ量子信息4,1(2018)。14。Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Huang,W。等。硅在硅中的两倍大门的保真基准。自然569,532(2019)。15。Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Zheng,G。等。使用芯片谐振器在硅中快速基于门的自旋读出。自然纳米技术14,742(2019)。16。Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Volk,C。等。通过高频累积门对Si/Sige量子点的快速电荷传感。Nano Letters 19,5628(2019)。
摘要:记录具有小型单层积分放大器的神经信号在研究以及商业应用中都具有很高的兴趣,在商业应用中,通常可以并行获取100个或更多通道。本文回顾了基于CMOS技术(包括侧向双极器件)的低噪声生物医学扩增器设计的最新发展。根据其噪声效率因子(NEF),输入引用的绝对噪声,电流消耗和面积,对七个主要电路拓扑类别进行了识别和分析。观察到较低的NEF的历史趋势,而绝对噪声功率和电流消耗在超过五个数量级以上表现出广泛的趋势。通过晶体管级的模拟和从180 nm和350 nm CMOS技术制造的五个不同的原型设计进行测量,检查了侧向双极晶体管作为放大输入设备的性能。最低测量的噪声曲线为9.9 NV/√Hz,偏置电流为10 µ,导致NEF为1.2。
基因修饰的生物(GMO)已成为可持续生物经济学的组成部分,并在农业,生物能源和生物医学中有一系列应用。然而,转基因生物和相关合成生物学方法的快速发展引发了许多与环境逃生,检测以及对天然生态系统的影响有关的生物安全问题。已经部署在各种微生物宿主中,从经典的相互作用到全球基因组进行重新编码,已经部署了无数的遗传保护措施。然而,为了实现微生物作为生物经济中的生物催化平台的全部潜力,需要更深入地了解有关生物膜片约束的微生物响应能力的基本原理以及转基因生物与环境的相互作用。在此,我们回顾了评估生物内生物培养和微生物生物生物生产力的最新分析生物技术进步和策略,以及预测系统生物设计的机会,以确保可行的生物经济。
摘要 — RTL 验证中的一个关键挑战是生成有效的测试输入。最近,RFUZZ 提出使用一种自动化软件测试技术,即灰盒模糊测试,来有效地生成测试输入,以最大限度地提高整个硬件设计的覆盖率。对于需要测试大型硬件设计的一小部分的情况,RFUZZ 方法非常耗时。在这项工作中,我们提出了一种定向测试生成机制 DirectFuzz。DirectFuzz 使用定向灰盒模糊测试生成针对模块实例的测试输入,从而实现有针对性的测试。我们的实验结果表明,在各种 RTL 设计上,DirectFuzz 覆盖目标站点的速度比 RFUZZ 快 17.5 倍(平均 2.23 倍)。索引术语 —灰盒模糊测试、RTL 验证、覆盖定向测试生成、RISC-V I. 介绍
1 爱尔兰国立大学工程学院电气与电子工程系,爱尔兰戈尔韦,戈尔韦 2 爱尔兰国立大学 CÚRAM 医疗器械研究中心人体运动实验室,爱尔兰戈尔韦,戈尔韦 3 爱尔兰国立大学医学院生理学系,爱尔兰戈尔韦,戈尔韦 4 爱尔兰国立大学医学院全科医学系,爱尔兰戈尔韦,戈尔韦 5 爱尔兰应用患者安全与模拟中心,爱尔兰戈尔韦大学医院 6 爱尔兰国立大学机械工程系,爱尔兰戈尔韦,戈尔韦 7 爱尔兰戈尔韦大学医院重症监护室 8 爱尔兰戈尔韦大学医院 9 爱尔兰国立大学心理学学院,爱尔兰戈尔韦,戈尔韦 10 爱尔兰国立大学医学院麻醉学系,爱尔兰戈尔韦,戈尔韦 11 爱尔兰国立大学麻醉与重症监护医学系,爱尔兰戈尔韦,戈尔韦 12 中心雷恩大学医院 (CHU Rennes),雷恩,法国 13 Faculté de Médicine de l’Université de Rennes,雷恩,法国
I.引言本文档为赞助商和申请人提供了与FDA相互作用的有关药物或生物产品的复杂创新试验设计(CID)建议的指导。1 FDA正在发布本指南,以部分授权根据《 21 Century Act Act》第3021条(治疗法案)。根据《治疗法案》的要求,本指南讨论了在药物和生物产品的开发和监管审查中使用新颖的试验设计,赞助商如何获得有关与建模和仿真相关的技术问题的反馈,以及应提交的定量和定性信息的类型,这些信息的类型应提交供审查。与《治疗法案》第3021条规定的授权有关的其他建议在FDA关于药物和生物制剂临床试验的自适应设计指南中介绍了(参考文献1)。2本指南最终确定了2019年9月同一标题的指南草案。FDA的指导文件,包括此指南,不确定合法可执行的责任。相反,指南描述了FDA当前对某个主题的想法,除非引用特定的监管或法定要求,否则应仅将其视为建议。在FDA的指导中,该单词的使用应意味着建议或建议进行某些内容,但不需要。
摘要:最近已经认识到,由于研究人员的兴趣,材料和纺织品的增长正在连续发展。颜色变化技术最近在许多产品和材料中反映了,由于市场内颜色变化的需求增加。其中一些要求可能因受益而有所不同,而有些要求则是表达创造力的目的。通过各种方法实现了改变颜色的技术,其中一种是铬材料。这样的材料既是光色素和热色素着色剂。他们是市场上良好的着色剂。光致质着色剂具有在暴露于阳光的情况下改变色彩的能力,而热色素着色剂在暴露于热量时会改变颜色。由于其潜力,这些类型的着色剂已成为研究的主要重点。它们已用于各种应用中,例如医疗热量表,塑料带温度计,食物包装等。在过去的几年中,此类着色剂在纺织品上的应用大大提高了,这将使潜力通过此类产品丰富市场。本文重点介绍了光致变色和热色素的色素,这些色素被应用于织物上,然后在设计中应用它们。设计的灵感来自变色龙,因为铬材料的另一个术语是“变色龙”材料。耐用性和舒适实验在将其应用于执行的设计上之前,在铬织物上进行了执行,目的是区分应应用的区域。
摘要 - 与CMOS过程技术缩放,制造纳米级晶体管,触点和互连的掩模成本变得非常昂贵,特别是对于低容量设计。此外,较高的晶体管密度导致了较高的设计复杂性和大型模具,这导致了设计周期时间的增加和过程产量下降。这些挑战迫使小批量应用特异性集成电路(ASIC)朝着高度次优的可编程栅极阵列(FPGAS)朝向高度的。In this arti- cle, we propose a new approach for designing and fabricating high-mix, low-volume heterogeneously integrated ASICs, referred to as Microscale Modular Assembled ASIC (M2A2), consisting of: 1) pick-and-place assembly of prefabricated blocks (PFBs) which utilizes the nano-precision placement capabilities developed in jet-and-flash imprint lithography (J-FIL)和2)EDA设计方法利用无监督的学习和图形匹配技术。EDA方法论利用现有的CAD工具基础架构,以便于当前的EDA生态系统中采用。所提出的制造技术利用采摘和地组装技术允许PFBS的纳米专业组装。PFB可以用高级过程节点制造,然后在晶圆基板上编织在一起。然后可以在PFB编织层的顶部创建/放置定制设计的低成本后端金属层,以实现各种高混合,低量的ASIC设计。M2A2将通过最佳的PFB选择和编织在前端设计中具有更大的功能。在本文中,基于M2A2的设计的性能与不同的设计技术(例如基线ASIC,FPGA和SASIC)相对,在16 nm,40 nm和130 nm CMOS ProudeS节点上。PNR后模拟结果超过15个IWL基准测试表明,所提出的M2A2设计实现了27。11× - 34。89×降低功率 - 否决产物(PDP),并产生1。69× - 2。与基线ASIC相比, 36倍面积。 M2A2设计达到15%–68.5%36倍面积。M2A2设计达到15%–68.5%
现实:这些试验结果都非常不可靠•PR(TOX | D = MTD)的95%CI从.01到.52•毒性严重程度均被忽略。•疗效被忽略。如果PR(响应| D = 200)= .25和PR(响应| D = 300)= .50怎么办?
我们比较了和对比,在几种设计中,避免了COVID-19候选疫苗的临床试验的预期持续时间,感染和死亡的数量,包括传统的随机临床试验以及适应性和人类的挑战试验。使用校准当前大流行的流行病学模型,我们为504个参数的独特组合模拟了每个临床试验设计的时间过程,从而使我们能够确定在给定情况下哪种试验设计最有效。与下一个最佳临床试验设计相比,一项人为挑战试验可提供最大的净收益,在美国额外增加110万个感染和8,000例死亡 - 如果其设置时间很短,或者大流行时间较慢。在其他大多数情况下,自适应试验提供了更大的净收益。
