1 圣地亚哥德孔波斯特拉大学粒子物理系,15782-圣地亚哥德孔波斯特拉,西班牙 2 卫生研究所分子成像组,15706-圣地亚哥德孔波斯特拉,西班牙 3 巴黎萨克雷大学物理实验室(IJCLab-UMR9012),奥赛,91405 法国 4 国立加速器中心,41092 塞维利亚,西班牙 5 塞维利亚大学原子、分子和核物理系,41012 塞维利亚,西班牙-赫尔曼-赫尔曼-赫尔曼 1,76344 Eggenstein-Leopoldshafen,德国。目前在德国电子同步加速器 DESY,Notkestrasse 85,22607 汉堡,德国 7 医学物理和生物数学组,西班牙圣地亚哥德孔波斯特拉卫生研究所,15706。 8 巴塞罗那微电子研究所,国家微电子中心 (IMB-CNM, CSIC),贝拉特拉 08193 西班牙
1 圣地亚哥德孔波斯特拉大学粒子物理系,15782-圣地亚哥德孔波斯特拉,西班牙 2 卫生研究所分子成像组,15706-圣地亚哥德孔波斯特拉,西班牙 3 巴黎萨克雷大学物理实验室(IJCLab-UMR9012),奥赛,91405 法国 4 国立加速器中心,41092 塞维利亚,西班牙 5 塞维利亚大学原子、分子和核物理系,41012 塞维利亚,西班牙-赫尔曼-赫尔曼-赫尔曼 1,76344 Eggenstein-Leopoldshafen,德国。目前在德国电子同步加速器 DESY,Notkestrasse 85,22607 汉堡,德国 7 医学物理和生物数学组,西班牙圣地亚哥德孔波斯特拉卫生研究所,15706。 8 巴塞罗那微电子研究所,国家微电子中心 (IMB-CNM, CSIC),贝拉特拉 08193 西班牙
摘要。LUXE 实验(LASER Und XFEL 实验)是 DESY Hamburg 正在规划的一项新实验,它将研究强场前沿的量子电动力学 (QED)。在这种状态下,QED 是非微扰的。这表现在从 QED 真空中创建物理电子-正电子对。LUXE 打算通过使用硅跟踪探测器等来测量这种前所未有的状态下的正电子产生率。大量预期的正电子穿过敏感的探测器层会导致极具挑战性的组合问题,这对于经典计算机来说在计算上会变得非常困难。本文提出了一项初步研究,以探索量子计算机解决此问题的潜力以及从探测器能量沉积中重建正电子轨迹。重建问题以二次无约束二进制优化的形式提出。最后,讨论了量子模拟的结果,并将其与传统的经典轨迹重建算法进行了比较。
摘要:在过去的几年中,在几次梁测试活动中观察到,在电压下运行的电压比在实验室测试中安全操作的电压低得多时,它辐照了LGAD传感器的典型恒星形燃烧标记。本文提出的研究旨在确定这些传感器可以承受的安全工作电压。作为Atlas高粒度定时检测器(HGTD)梁测试的一部分,在两个测试梁设施(Hamburg)和Cern-SPS(Hamburg)和Cern-SP(Geneva)中测试了许多来自各种生产者的辐照传感器。将样品放在梁中,并在很长一段时间内保持偏置,以达到越过每个传感器的大量颗粒。两种光束测试都得出了类似的结论,即当传感器中的平均电场大于12 v/μm时,这些破坏性事件开始发生。
4. 研究专长和兴趣 a) 专业领域:材料科学、纳米催化、X 射线吸收光谱、原位 XAS 研究、高级 XAS 数据分析、机器学习方法、原子模拟技术(分子动力学、逆蒙特卡罗方法)、全局优化技术(模拟退火、进化算法)、线性代数方法(主成分分析、多元曲线分辨/盲源分离方法)、理论物理(介观电荷传输、量子计算、统计物理)、一些计算流体动力学经验。 b) 目前的研究兴趣:使用时间分辨 XAS 方法对材料进行实验研究,将 XAS 的结构和动力学信息与材料特性和功能联系起来。我对开发和应用先进的数据分析方法特别感兴趣,以充分利用 X 射线吸收光谱中编码的信息,并将实验测量与理论建模的结果相结合。 c) 参与同步辐射装置的实验; XAS 经验:我曾参加过 BESSY、DORIS、PETRA III 和 ANKA(德国)、SLS(瑞士)、ELETTRA(意大利)、SOLEIL、ESRF(法国)、ALBA(西班牙)、SSRL、NSLS-II APS(美国)同步辐射设施的 XAS 实验,包括荧光、透射模式和掠入射模式的测量、温度相关、压力相关 XAS 测量、催化过程的原位研究、RIXS 测量(APS、ESRF)、QXAFS 模式测量(NSLS-II、SOLEIL、SLS 和 DESY)、X 射线拉曼散射实验(ESRF)和光学色散装置测量(SOLEIL)。此外,我还在 SOLEIL 同步加速器和基于同步加速器的 XRD(NSLS II 和 DESY)方面有 FTIR 测量经验。目前,我还领导着一个团队,负责设计 PETRA III/IV 上由马克斯·普朗克学会资助的新光束线,该光束线致力于使用 XAS、XRD、SAXS 和 XES 方法对催化剂进行原位研究。此外,我和 FHI 的团队目前正在努力改造新的实验室 XAS 光谱仪,以对催化剂进行原位研究。我与他人合作撰写了 100 多篇关于 XAS 研究的论文,其中包括关于 XAS 数据分析高级方法的论文。 d) 参与重大研究项目:CatLab 研究平台的扩展(德国联邦教育与研究部(BMBF)和马克斯普朗克学会资助):与 Beatriz Roldan Cuenya 教授共同提议设计 PETRA 同步加速器的光束线前端站,2021 年至今美国国家科学基金会项目工具包,用于表征和设计 DMREF 计划下的双功能纳米颗粒催化剂(合作项目,涉及叶史瓦大学/石溪大学、德克萨斯大学奥斯汀分校、匹兹堡大学),2015 年 – 2018 年。EUROFUSION 项目 ODS 颗粒何时以及如何形成?- ODS 钢和高蠕变强度 ODS 钢的 X 射线吸收光谱和从头算建模(拉脱维亚大学与德国卡尔斯鲁厄理工学院和西班牙 CIEMAT 合作项目),2014- 2015 年。 EURATOM 项目 实验室规模的纳米结构 ODSFD 批次的生产和特性以及模型的实验验证(拉脱维亚大学与德国卡尔斯鲁厄理工学院和芬兰赫尔辛基大学合作项目,2013 – 2015 年。 e) 参加暑期学校和研讨会 1) 原子模拟技术暑期学校(2010 年 7 月 4 日 - 2010 年 7 月 25 日,意大利的里雅斯特); 2) 超快 X 射线科学与 X 射线自由电子激光器 (2011 年 3 月 29 日至 2011 年 4 月 2 日,德国汉堡 DESY);3) 第 32 届柏林中子散射学校 (2012 年 3 月 7 日至 2012 年 3 月 16 日,德国柏林 HZB)。4) HERCULES-2013(大型实验系统用户高级欧洲研究课程)(2013 年 2 月 24 日至 2013 年 3 月 28 日,法国格勒诺布尔 ESRF)。
1 Fisika Aplikatuaua Saila,Gipuzkoaako Ingeniaritza Eskola,巴斯克大学大学(UPV/EHU),20018年,西班牙圣塞巴斯蒂安2 20018 San Sebastián, Spain 4 Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA 5 European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex 9, France 6 Ruprecht Haesel Laboratory, Deutsches Elektronen-Synchrotron Desy, 22607 Hamburg, Germany 7 Institut Für Experimentelle und Angewandte Physik, Christian-Albrechts-University Zu Kiel, 24098 Kiel, Germany 8 UGC-Dae Consortium for ScientiFori Rasearch, University Campus, Khandwa Road, COMMIT-452001, India 9 Department de Física Aplicada, Universidade de Santiago de Compostela, 15782西班牙圣地亚哥·德·波斯特拉(Santiago de Compostela),10个学院,伊马图斯研究所,圣地亚哥大学,15782年,圣地亚哥,西班牙圣地亚哥,西班牙11 ISIS设施,STFC Rutherford Appleton实验室,DIDCOT,DIDCOT OXCOT,DIDCOT OXX11 0QX,didcot Oxx 12 Deutsertron,Unitedsectron norkterron norktrron notkrotron。85, 22607 Hamburg, Germany 13 Alba Synchrotron Light Source, 08290 Barcelona, Spain 14 Department of Physical, Computer Sciences and Mathematics, University of Modena and Reggio Emilia, via Campi 213 / A, I-41125 Modena, Italy 15 Center S3, Institute Nanoscienze-Cnr, via Campi 213 / A, I-41125 Modena,意大利16材料(Theos)的理论和模拟,以及国家计算设计与发现新颖材料的发现与发现(Marvel),ÉcolePolytechniquefédéraledeLausanne,1015瑞士洛桑,瑞士17物理学系,特伦托大学,通过Sommari 14,38123 Povo,Itbone,Itbone,Itbons,ITNAL SONNENINES,ITNENINES,ITNENNESISS,ITNENNESNENNES, de Paris,UMR7588,F-75252,法国,法国19号石墨烯实验室,意大利技术基金会,通过Morego,16163年,意大利,欧洲热那亚20欧洲同步辐射设施(ESRF),BP 220,F-38043,F-38043 GRENOBLE CEDEX,GRENOBLE CEDEX,FRANCE 21岁,000 000.意大利22 Alto University Applied Physics系,02150 ESPOO,芬兰23 Ikerbasque,巴斯克科学基金会,48013 Bilbao,西班牙85, 22607 Hamburg, Germany 13 Alba Synchrotron Light Source, 08290 Barcelona, Spain 14 Department of Physical, Computer Sciences and Mathematics, University of Modena and Reggio Emilia, via Campi 213 / A, I-41125 Modena, Italy 15 Center S3, Institute Nanoscienze-Cnr, via Campi 213 / A, I-41125 Modena,意大利16材料(Theos)的理论和模拟,以及国家计算设计与发现新颖材料的发现与发现(Marvel),ÉcolePolytechniquefédéraledeLausanne,1015瑞士洛桑,瑞士17物理学系,特伦托大学,通过Sommari 14,38123 Povo,Itbone,Itbone,Itbons,ITNAL SONNENINES,ITNENINES,ITNENNESISS,ITNENNESNENNES, de Paris,UMR7588,F-75252,法国,法国19号石墨烯实验室,意大利技术基金会,通过Morego,16163年,意大利,欧洲热那亚20欧洲同步辐射设施(ESRF),BP 220,F-38043,F-38043 GRENOBLE CEDEX,GRENOBLE CEDEX,FRANCE 21岁,000 000.意大利22 Alto University Applied Physics系,02150 ESPOO,芬兰23 Ikerbasque,巴斯克科学基金会,48013 Bilbao,西班牙
堆积作用的显著增加是高亮度 (HL) LHC 运行阶段物理项目面临的主要实验挑战之一。作为 ATLAS 升级计划的一部分,高粒度计时探测器 (HGTD) 旨在减轻前向区域的堆积效应并测量每束团的光度。HGTD 基于低增益雪崩探测器 (LGAD) 技术,覆盖 2.4 到 4.0 之间的伪快速度区域,将提供高精度计时信息,以区分在空间上靠近但在时间上相隔很远的碰撞。除了具有抗辐射功能外,LGAD 传感器还应在寿命开始时为最小电离粒子提供每轨 30 ps 的时间分辨率,在 HL-LHC 运行结束时增加到 75 ps。本文介绍了 2021-2022 年 CERN SPS 和 DESY 使用测试光束研究的来自不同供应商的几种辐照 LGAD 的性能。这项研究涵盖了 LGAD 在收集电荷、时间分辨率和命中效率方面的有希望的结果。在大多数情况下,对于高辐照传感器(2.5 × 10 15 n eq / cm 2 ),测量的时间分辨率小于 50 ps。
摘要:将在ATLAS实验中安装高粒度定时检测器(HGTD),以减轻大型强子撞机(LHC)在CERN的高光度(HL)期间的堆积效应。低增益雪崩探测器(LGADS)将提供颗粒到HGTD的到达时间的高精度测量值,从而改善粒子范围的分配。为了应对高辐射环境,通过在增益层中添加碳来优化LGAD,从而降低了照射后的受体去除率。来自不同供应商的几种富含碳的LGAD传感器的性能,并以1.5和2的高流量进行照射。5×10 15 N EQ /cm 2,在2021年和2022年的横梁测试活动中已在Cern SPS和Desy中进行了测量。本文介绍了与示波器记录的数据获得的结果,该示波器与光束望远镜同步,该示波器在几μm的分辨率内提供了粒子位置信息。提出了收集的电荷,时间分辨率和效率测量值。此外,还研究了效率均匀性,这是入射粒子在传感器垫中的位置的函数。
外部通讯员: 阿贡国家实验室(美国):D Ayres 布鲁克海文国家实验室(美国):P Yamin 康奈尔大学(美国):D G Cassel DESY 实验室(德国):llka Regel、P Waloschek 费米国家加速器实验室(美国):Judy Jackson GSI 达姆施塔特(德国):G Siegert INFN(意大利):Barbara Gallavotti 北京高能物理研究所(中国):Tongzhou Xu 杰斐逊实验室(美国):Melanie O'Byrne JINR 杜布纳(俄罗斯):B Starchenko KEK 国家实验室(日本):A Maki Lawrence 伯克利实验室(美国):Christine Celata 洛斯阿拉莫斯国家实验室(美国):C Hoffmann NIKHEF 实验室(Pay-Bas):Paul de Jong 新西伯利亚研究所(俄罗斯):S Eidelman 奥赛实验室(法国):Anne-Marie Lutz PSI实验室(瑞士):P-R Kettle 卢瑟福阿普尔顿实验室(英国):Jacky Hutchinson 萨克雷实验室(法国):Elisabeth Locci IHEP,Serpukhov(俄罗斯):Yu Ryabov 斯坦福线性加速器中心(美国):N Calder TRIUMF 实验室(加拿大):M K Craddock
博士后研究科学家(F/M/D)Helmholtz制药研究所Saarland(HIPS)研究针对传染病的新活性成分。它成立于2009年8月,是Braunschweig的Helmholtz感染研究中心(HZI)的分支机构,以及Saarland University。2015年在萨尔兰大学的校园里搬进了一座新的研究大楼。目前,该研究所仍在建设中的260名国际原产地工作。臀部是德国首个公共资助的非大学研究机构,明确致力于制药研究。该研究所与国际和国家研究机构和工业公司合作。研究小组药物生物信息学组尖端生物信息学和计算机科学技术,用于预测生物活性化合物的行动方式以及遗传变异对表型的影响。我们将蛋白质结构分析和机器学习方面的专业知识结合在一起,以创建更强大和可解释的计算方法。由BMBF资助的项目“基于AI的基于AI的疾病症状和药物副作用的方法”旨在通过利用系统生物学,结构生物信息学以及机器学习和人工智能来发现药物副作用的机制。这是HZI/HIPS,Hamburg大学和德国电子同步器(DESY)之间的联合项目。职责: